• 제목/요약/키워드: 희토류원소 지구화학

검색결과 83건 처리시간 0.027초

Geochemical Study of the Cretaceous Granitic Rocks in Southwestern Part of the Korean Peninsula (한반도 남서부지역에 분포하는 백악기 화강암류에 대한 지화학적 연구)

  • Wee Soo Meen;Park Se Mi;Choi Seon Cyu;Ryu In Chang
    • Economic and Environmental Geology
    • /
    • 제38권2호
    • /
    • pp.113-127
    • /
    • 2005
  • Cretaceous intrusive and extrusive rocks are widely distributed in the southwestern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the western proto-Pacific plate beneath the north-eastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that the all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. Higher values of $Fe_2O_3/FeO$ of the granitic rocks in the western area suggest that the granitoids had been solidified under highly oxidizing environment. The granitic bodies in the eastern area also show higher contents of Li, Ni, Co, Sr, Cr, Sc and lower Rb and Nb compared to the those of the western area. Chondrite normalized REE patterns show generally enriched LREE and strong negative Eu anomalies in the western wet while slight to flat Eu anomalies in the east-ern area. The REE and $(La/Lu)_{CN}$ of the granites are $60{\~}499ppm$ and $8.9{\~}66$ correspond to the range of the continental margin granite. On the ANK vs. ACNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type, VAG and syn-collision granite. Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of proto-Pacific plate.

Geochemical Compositions of Coastal Sediments around Jeju Island, South Sea of Korea: Potential Provenance of Sediment (한국 남해 제주도 연안 퇴적물의 지화학적 특성: 퇴적물의 근원지)

  • Lim, Dong-Il
    • Journal of the Korean earth science society
    • /
    • 제24권4호
    • /
    • pp.337-345
    • /
    • 2003
  • Surficial sediments from the northern coastal area of Jeju Island, southeastern Yellow Sea (South Sea of Korea) were analyzed for grain-size texture, some geochemical characteristics and clay mineralogy in order to assess their provenance. Rare-earth element compositions and some geochemical discrimination diagrams, especially of Ti/Al, Nb/Al and Rb/Al ratios, were revealed to be useful indices for identifying the origin of sediments. These indices, together with clay mineral compositions, suggest that the coarse-grained sediments originate from the volcanic rocks of Jeju Island, whereas the fine-grained sediments are derived from Chinese rivers, especially the Changjiang River. The oceanic circulation pattern and the physical-chemical properties of seawater in the Yellow and East China seal support the possibility that the fine-pained Changjiang (Yangtze River) sediments can reach the coastal area of Jeju Island (southeastern Yellow Sea).

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • 제39권3호
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Geochemical Studies of the Trace Element of the Basalt in the Kilauea, Hawaii (킬라우에아 현무암의 미량원소에 대한 지구화학적 연구)

  • Park, Byeong-Jun;Jang, Yun-Deuk;Kwon, Suk-Bom;Kim, Jeong-Jin
    • Economic and Environmental Geology
    • /
    • 제40권5호
    • /
    • pp.675-689
    • /
    • 2007
  • Kilauea volcano's summit area was formed by continuous ind/or sporadic eruption activities for several hundreds years. In this study, we mainly focused on the trace elements characteristics through systematic sample rocks erupted from 1790 to September of 1982. Under the microscope it can be observed some main minerals such as olivine, clinopyroxene. and plagioclase with minor opaque minerals including Cr-spinel and ilmenite. Zr, V, Y, Ti elements show incompatible activities with MgO while Ni, Cr, Co elements show highly compatible properties. Elements like as Ba, Rb, Th, Sr, Nd are highly incompatible to show positive trends with $K_2O$. In the REE diagram LREE is more enriched than HREE suggesting typical Oceanic Island Basalt(OIB) type. It can be suggested that Sr have an effect on the fractionation of plagioclase from the kink in the $K_2O$ variation diagram. Y/Ho ratio diagram shows there was no fluids effect in the historical Kilauea volcano but Zr/Hf ratio diagram shows a significant difference between Kilauea lavas and PuuOo lavas. There are distinctive changes of trace element contents showing in particular abrupt changes of temporal variations between 1924 and 1954. Moreover, PuuOo lavas which had been erupted since 1983 follow these decreasing trends of trace element variation. Therefore, it is strongly suggested that these abrupt changes of trace elements trends result from the huge collapse geological event which formed Halemaumau crater in 1924 causing contamination effects of crustal contents into magma chamber and from the changes of parental magma composition injected into Kilauea volcano's summit magma reservoir.

Genesis of the acidic metavolcanic rocks distributed around the Chungju iron deposit in the Gyemyeongsan Formation (계명산층 내의 충주 철광상 주변에 분포하는 산성 변성화산암의 성인)

  • Park Maeng-Eon;Kim Gun-Soo;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • 제14권3호
    • /
    • pp.169-179
    • /
    • 2005
  • Acidic metavolcanic rocks distributed around the Chungju iron deposit show significantly high abundances of rare earth elements and high field strength elements. Relatively high ${\epsilon}_{Nd}$(0) values and lack of negative Nb anomaly suggest that assimilation of crustal material is not involved in their generation. They are plotted within the within-plate environment according the tectonic discrimination diagrams. Such geochemical characteristics are very similar to the acidic metavolcanic rocks of Munjuri Formation. They also show geochemical characteristics of Al-type magma of Eby (1992). All such diagnostic characters indicate differentiation of mantle-derived magma produced from the rift environment, related to the breakup of continent. In contrast to the alkali granites and the rare metal deposit both having age of c. 330 Ma, Sm-Nd isotopic data of the acidic metavolcanic rocks do not form well defined isochron. However, the alkali granites reveal low ${\epsilon}_{Nd}$(0) values, while the acidic metavolcanic rocks and the rare metal deposit both have significantly higher ${\epsilon}_{Nd}$(0) values. Considering such differences, we propose following generation hypothesis: The acidic metavolcanic rocks around Chungju iron deposit was erupted at 750 Ma as rest of the acidic metavolcanic rocks of Gyemyeongsan and Munjuri Formations. About 330 Ma ago, partial melting of existing Al-type igneous materials and some old crustal materials produced alkali granite. The rare metal deposit was also produced by redistribution of related materials within the acidic volcanics due to hydrothermal activities occurred at the same time. Sm-Nd isotopic systematics of the acidic metavolcanic rocks were disturbed during the regional metamorphic event at ca. 280 Ma.

Geochemistry of Precambrian Mafic Dikes in Northern Michigan, U.S.A.: Implications for the Paleo-Tectonic Environment (북부 미시간 지역에 분포하는 선캠브리아기의 염기성 암맥에 대한 지화학적인 연구)

  • Wee, Soo Meen
    • Economic and Environmental Geology
    • /
    • 제24권4호
    • /
    • pp.447-463
    • /
    • 1991
  • Petrological and chemical studies of Precambrian dikes in the southern Lake Superior region were conducted with the objects of evaluating magma source and constraining models for the paleo-tectonic environment. Forty-six samples were analyzed for major, trace, and rare earth elements. Chemical data of the studied dikes are typical of continental tholeiites and showing iron-enrichment fractionation trend. With wallrock contamination carefully evaluated, a series of tectonic discriminating methods utilizing immobile trace elements indicate that the source magma was a high-Ti tholeiitic basalt similar to present-day T-type MORB. Effect of chemical contamination from wallrock assimilation accmulates with increasing differentiation. Evolved rocks show LREE enriched patterns and have enhanced levels of LIL elements (e.g., Rb, K, Ba, Th), but low levels of high field strength elements (e.g., Nb, P, Ti) with respect to their neighboring elements. It is suggested from this study that this enrichment possibly due to a combination of a feature inherited from the subcontinental lithosphere and crustal contamination. Geochemical signatures of these rocks are distinctively different from those of arc-related volcanics. Comparisons with chemistries of modern magmas show a pattern of overlap between Within-plate and ocean-floor characteristics, and chemical signatures of these rocks favor a model of intrusion into a crustal environment undergoing lithospheric attenuation.

  • PDF

Petrologic and Mineralogic Studies on the Origin of Paleolithic Obsidian Implements from Wolseongdong, Korea (월성동 구석기 유적 출토 흑요석제 석기의 암석 및 광물학적 연구를 통한 원산지 추정)

  • Jang, Yun-Deuk;Park, Tae-Yoon;Lee, Sang-Mok;Kim, Jeong-Jin
    • Journal of the Korean earth science society
    • /
    • 제28권6호
    • /
    • pp.733-742
    • /
    • 2007
  • Petrological, mineralogical, and geochemical analyses were carried on the paleolithic obsidian implements excavated at Wolseongdong, Daegu, Korea. The obsidians has a homogeneous glassy texture that can be observed in a typical obsidian formed from a rapid cooling of silicic magma. Major element composition of the obsidians represent calc-alkaline series. Comparing those with other obsidians from domestic local excavation sites, Mt. Baekdu, and Kyusu of Japan, the Wolseongdong obsidians show similar element distribution pattern with others in spite of small difference in trace and rare Earth element contents. Sr isotopes of the obsidians considerably differ from those of the obsidians from southern part of the Korean Peninsula or from Mt. Baekdu. K-Ar age is approximately 30 Ma, which is much older than Mt. Baekdu (10 Ma). Therefore, considering the characteristics of obsidians found in the Korean Peninsula including mineralogy, petrology, trace element, and isotopes chronology, the obsidians can be divided into four groups: Mt. Baekdu, southern part of Korea (Kyusu of Japan), middle part of Korea, and Wolseongdong region. These groups suggest a possibility of more than four different origins of the obsidians found in the Korean Peninsular.

The Effect of Eluent Concentration on the Separation of Nd with Ln-resin Method (란탄 레진법에서 용리액의 농도가 Nd 분리에 미치는 영향)

  • Lee, Hyo-Min;Lee, Seung-Gu;Tanaka, Tsuyoshi
    • The Journal of the Petrological Society of Korea
    • /
    • 제24권4호
    • /
    • pp.365-371
    • /
    • 2015
  • The rare earth element(REE)s play an important role in understanding of rock formation and evolution because of their similar geochemical behaviors. Sm and Nd are more useful than other REEs because Sm-Nd isotopic system has important applications for geochemical interpretation like age dating and crustal evolution. These studies require a chromatographic technique for Sm and Nd separation from the geological samples. Ln-resin method using 0.25 M HCl as the eluent is widely used for Nd separation. However, this technique has a disadvantage of the poor elemental selectivity that the Nd fraction contains Ce as a tailing of the previous fraction. This technical report is a comparison study on the effect of eluent concentration between 0.25 M HCl and 0.15 M HCl on the separation of Nd with Ln-resin method for improving the technique of Nd separation. The results showed that the separation of Ce and Nd using 0.15M HCl as the eluent was not effective compared to the separation using 0.25 M HCl. In this experiment, we could confirm that the dilution of eluent might not be effective on the high purity separation of Nd with Ln-resin method.

Geochemistry of Heavy Metals and Rare Earth Elements in Core Sediments from the Korea Deep-Sea Environmental Study (KODES)-96 Area, Northeast Equatorial Pacific (한국심해환경연구(KODES) 지역 주상 퇴적물중 금속 및 희토류원소의 지구화학적 특성)

  • Jung, Hoi-Soo;Park, Sung-Hyun;Kim, Dong-Seon;Choi, Man-Sik;Lee, Kyeong-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제2권2호
    • /
    • pp.125-137
    • /
    • 1997
  • To study the vertical variation of heavy metal and Rare Earth Element (REE) contents in deep-sea sediments, eighteen cores were sampled from the Korea Deep-sea Environmental Study (KODES)-96 area in the C-C zone (Clarion-Clipperton fracture zone), northeast equatorial Pacific. Sediment columns can be divided into three units based on sediment colors and geochemical characters; uppermost Unit I with brown color, middle Unit II with pale brown color and smaller Ni/Cu ratio than the ratio in Unit I, and lowermost Unit III with dark (brown) colors and higher contents of Mn, Ni, Cu, and REEs than those in Unit I and II. Unit II can be divided more into two layers of upper Unit IIa and lower Unit IIb. Unit IIb is characterized by high contents of Cu, 3+REEs (REEs except Ce), smectite, and severely deteriorated fossil tests. Unit III can also be divided into two units; upper Unit IIIa with dark brown color, and lower Unit IIIb with black color and enriched Mn and Fe. The KODES area was located near from the East Pacific Rise (EPR) When Unit III Sediments were deposited, considering the hiatus between Unit II and III (Quaternary-Tertiary boundary) and the spreading rate (10 cm/yr) and direction (north southern west) of the Pacific plate from the EPR. High contents of Mn and Fe in Unit IIIb may be related with hydrothermal influence from the EPR. Meanwhile, Unit IIb (about 2~3 Ma) and Unit III (11~30 Ma) layers were probably formed near (or under) the equatorial high productivity zone, and accordingly received a lot of organic materials. As a result, Cu and 3+REEs, closely associated with organic materials, are enriched in smectite and/or Ca-P composites (fish bone debrise, biogenic apatite) after decomposition and reprecipitation on the sea floor. Higher contents of Cu and 3+REEs in Unit IIb and III are suggested to be the result of abundant supply of organic substances in the equatorial high productivity zone.

  • PDF

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF