• 제목/요약/키워드: 희박과급

Search Result 7, Processing Time 0.017 seconds

A Study on the Full Load Performance and Emission Characteristics with Turbo-charger Change in a HCNG Engine (HCNG 엔진의 터보차저 변경에 따른 전부하 출력 및 배출가스 특성 연구)

  • Park, Cheolwoong;Kim, Changgi;Lim, Gihun;Lee, Sungwon;Choi, Young;Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • Hydrogen-natural gas blends(HCNG) engine is optimizing technology of performance and emission characteristics with use of hydrogen's fast flame speed and wide flammability limit. As lean-burn limit is extended, the improvement in thermal efficiency and harmful emissions can be achieved. However, the extension of lean-burn limit under a wide open throttle operation point could be realized with the increase in boosting capacity in a lean-burn engine with turbo-charging system. In the present study, the power output characteristics of HCNG engine with turbo-charger change is assessed and feasibility of the increase in boosting capacity is evaluated. The turbo-charger design with high efficiency at higher flow rate rather than higher boosting pressure makes efficient operation possible at relatively rich mixture condition.

A Study on the Application of the Lean Boosting in a Hydrogen-fueled Engine with the SI and the External Mixture (흡기관 분사식 수소 SI기관의 희박과급 적용에 관한 연구)

  • Lee, Kwangju;Lee, Jonggoo;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • In order to achieve simultaneously the ultra-low NOx, the high power and the high efficiency in a hydrogen-fueled engine with SI and the external mixture, the effects of low temperature combustion, performance and exhaust are compared and analyzed by the application of the lean boosting. As the results, the decrease rate of the high temperature in the hydrogen is less decreased than the other fuels by high constant-volume specific heat. However, when the conditions of 1.7bar and ${\Phi}=0.33$ are reached by the lean boosting, the maximum gas temperature of hydrogen is decreased under the temperature of NOx formation and it is possible to stabilize combustion below 2% of COVimep. Also, at that condition, it is feasible to achieve simultaneously NOx-free and the power of gasoline level. Therefore, it is found that the lean boosting is useful in the hydrogen-fueled engine.

An Experimental Study on Expansion of Operation Range by Lean Boosting for a HCCI H2 Engine (희박과급에 의한 수소 예혼합 압축착화 기관의 운전영역 확장에 관한 실험적 연구)

  • Ahn, Byunghoh;Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.573-579
    • /
    • 2013
  • Hydrogen engine with homogeneous charged compression ignition can achieve high efficiency by high compression ratio and rapid chemical reaction rates spatially. However, it needs to expansion of the operation range with over-all load conditions which is very narrow due to extremely high pressure rise rate. The adoption of the lean boosting in a HCCI $H_2$ engine is expected to be effective in expansion of operation range since minimum compression ratio for spontaneous ignition is decreased by low temperature combustion and increased surround in-cylinder pressure. In order to grasp its possibility by using lean boosting in the HCCI $H_2$ engine, compression ratio required for spontaneous ignition, expansion degree of the operation range and over-all engine performance are experimentally analyzed with the boosting pressure and supply energy. As the results, it is found that minimum compression ratio for spontaneous ignition is down to the compression ratio(${\varepsilon}$=19) of conventional diesel engine due to decreased self-ignition temperature, and operation range is extended to 170% in term of the equivalence ratio and 12 times in term of the supply energy than that of naturally aspirated type. Though indicated thermal efficiency is decreased by reduced compression ratio, it is over at least 46%.

The Study of Engine Output and Emission Characteristics according to Air Fuel Ratio far a Supercharged LPLi Engine (과급 LPLi 엔진의 공연비 변화에 따른 출력성능 및 배기특성에 관한 연구)

  • 류재덕;윤용원;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • For the purpose of obtaining a fundamental data which is needed to develope the port injection type charged LPLi engine system, we manufactured intake port injection system of liquid charging LPG and modified heavy duty single cylinder LPLi engine from heavy duty diesel engine. Engine output and emission characteristics were analyzed under variable air/fuel ratio and charging pressure. Since LPG is consisted of propane and butane, we investigated combustion characteristics using this two kinds of fuel. From the result of charging engine performance test, engine torque increase about 30% ∼ 40% with 0.3bar charging pressure. In low speed condition, as charging pressure increase, combustion stability improve ill lean bum condition, but, in high speed condition, combustion stability make worse in lean bum condition. We know that engine output decreased rapidly from the condition of air excess ratio 1.3. In addition, we measured emission characteristics under the lean bum and charging condition. From this experiment, we found that CO emission is out of the question in the range from stiochiometric to lean burn and charging condition, but charging pressure has influence on HC emission.

Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas (합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선)

  • Park, Hyunwook;Lee, Junsun;Jamsran, Narankhuu;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

Numerical analysis on performances and emission characteristics of HCCI engine fueled with hydrogen added biogas (반응 메커니즘 기반의 수소 첨가 바이오가스 HCCI 엔진 성능 및 배출가스에 대한 수치 해석적 연구)

  • Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • In this research, numerical analysis was performed to determine the effects of hydrogen on biogas combustion for homogeneous charged compression ignition (HCCI) engines. The target engine specifications were a 2300cc displacement volume, 13:1 compression ratio, 15kW of electricity, and 1.2 bar boost pressure. The engine speed was fixed to 1800rpm. By varying the excess air ratio and hydrogen contents, the cylinder pressure, nitric oxide, and carbon dioxide were measured as a function of the hydrogen contents. According to preliminary studies related to the reaction mechanism for methane combustion and oxidation, a GRI 3.0 mechanism as the base mechanism was selected for HCCI combustion calculations describing the detailed reaction mechanism. By adding hydrogen, NO was increased while $CO_2$ was decreased. The cylinder pressure was also increased, having advanced timing for the maximum cylinder pressure and pressure rise region. Furthermore, lean operation limits were extended by adding hydrogen to the HCCI engine.

Performance and Emission Characteristics of a CNG Engine Under Different Natural Gas Compositions (천연가스 조성 변화에 따른 CNG 엔진 성능 및 배기가스 특성)

  • Ha, Young-Cheol;Lee, Seong-Min;Kim, Bong-Gyu;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.749-755
    • /
    • 2011
  • The performance and emission characteristics of a CNG (compressed natural gas) engine were experimentally investigated under different natural gas compositions. The engine specifications were as follows: 6606 cc, turbo, lean-burn-type; its ignition timing was fixed for the fuel gas with a HHV (higher heating value) of 10454 kcal/$Nm^3$. The experimental results showed that when the HHV of the fuel gas was changed from 10454 kcal/$Nm^3$ to 9811 kcal/$Nm^3$ and 9523 kcal/$Nm^3$, the average power reductions were 3.2 % and 3.4 % (1.5 % and 2.1 %, respectively, with A/F control switched off), respectively, and the average thermal-efficiency reductions were 1.1 % and 1.5 % (1.5 % and 2.1%, respectively, with A/F control switched off), respectively. The emissions of $CO_2$, CO, and $NO_x$ decreased as the HHV of the fuel gas was lowered. On the other hand, the emissions of THC (total hydrocarbon) were not consistent, and the extent of change in their emissions was small.