• Title/Summary/Keyword: 흡착재

Search Result 398, Processing Time 0.029 seconds

In Vitro Refolding of Inclusion Body Proteins Directly from E. coli Cell Homogenate in Expanded Bed Adsorption Chromatography (Expanded Bed Adsorption 크로마토그래피를 사용하여 재조합 E. coli 세포 파쇄액으로부터 내포체 단백질을 직접 재접힘하는 공정)

  • 조태훈;서창우;이은규
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • To avoid the intrinsic problem of aggregation associated with the traditional solution-phase refolding process, we propose a solid-phase refolding method integrated with expanded bed adsorption chromatography. The model protein used was a fusion protein of recombinant human growth hormone and a glutathione S transferase fragment. It was demonstrated that the EBA-mediated refolding technique could simultaneously remove cellular debris and directly renature the fusion protein inclusion bodies in the cell homogenate with much higher yields and less agregation. To demonstrate the applicability of the method, we successfully tested the three representative types of starting materials, i. e., rhGH monomer, washed inclusion bodies, and the E. coli homogenate. This direct and simplified refolding process could also reduce the number of renaturation steps required and allow refolding at a higher concentration, at approximately 2 mg fusion protein per ml of resin. To the best of our knowledge, it is the first approach that has combined the solid-phase refolding method with expanded bed chromatography.

  • PDF

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

Probability-Based LCCO2 Evaluation for Undergroung Structture with Repairing Timings Exposed to Carbonation (탄산화에 노출된 지하구조물의 보수횟수에 따른 LCCO2 평가)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.239-246
    • /
    • 2017
  • RC(Reinforced Concrete) structures can keep their performance during intended service life through initial service life and extension of the life through repairs. In the deterministic repairing method, cost and the related $CO_2$ emission increase with step-shaped escalation, however continuous results can be obtained through probabilistic repairing technique, and this is capable of reducing $CO_2$ emission through $CO_2$ absorption. In the work, repairing timing and $CO_2$ emission/absorption are evaluated based on the different methods like deterministic and probabilistic manner. The probabilistic technique considering $CO_2$ absorption with carbonation progress is evaluated to be very effective to reduction of $CO_2$ emission through extension of initial and additional service life due to repairs. When the variations of the service life from initial construction and repair material can be determined, the proposed technique can contribute to reduction of cost and $CO_2$ with decreasing repairing number.

Recent advances on Oil-water Separation Technology (유수분리 기술의 최신 동향)

  • Hong Ryul Park;Woonbong Hwang;Dukhyun Choi
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.69-79
    • /
    • 2023
  • Oil-water separation is a critical process for several industrial applications, including oil production, wastewater treatment, food processing, and environmental area such as marine oil spills. The separation efficiency of oil-water mixtures can be influenced by various factors such as mixture composition, oil and water conditions, and the separation technology used. Over the years, various technologies have been developed to separate water and oil by physical, chemical and biological methods. This paper presents an overview of the various methods and technologies available for oil-water separation, including gravity separation, centrifugal separation, and separation using adsorbents, filters. The strengths and limitations of each method are discussed, along with recent research trends and future prospects. Furthermore, this paper aims to provide direction for future research and industrial application of sustainable and environmentally friendly oil-water separation technologies. In conclusion, we provide a comprehensive overview of recent oil-water separation technologies that will be beneficial to researchers and industrialists in the field of oil-water separation.

Stabilization Characteristics of Upgraded Coal Using Palm Oil Residues (팜 잔사유를 이용한 고품위화 석탄의 안정화 특성분석)

  • Park, In Su;Chun, Dong Hyuk;Jo, Wan Taek;You, Ji Ho;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • In this research, the stabilization characteristics of upgraded coal using palm oil residues were investigated. The Eco coal, which is the Indonesian low-rank coal, was used as a raw material. The low-rank coal was mixed with palm fatty acid distillate (PFAD), and then dried in a nitrogen atmosphere at $107^{\circ}C$. The trend of spontaneous combustion of upgraded coal was studied by measuring of crossing-point temperature (CPT), low temperature oxidation and moisture readsorption. The results of the CPT measuring and low temperature oxidation showed that the propensity of spontaneous combustion of the upgraded coal was improved compared to the dried coal. The moisture readsorption characteristics of the upgraded coal was also improved. The upgraded coal was stabilized through the surface coating with PFAD, and stability of upgraded coal was proportional to the content of PFAD.

Changes of Carbohydrate Composition and Enzyme Adsorption on the Hydrolysis of Steam Exploded Wood by Cellulase (Cellulase에 의한 폭쇄재의 가수분해에 있어서 탄수화물조성 및 효소흡착량 변화)

  • Yang, Jae-Kyung;Kim, Chul-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.67-78
    • /
    • 2001
  • Two species(Quercus mongolica, populus euramericana) of hardwood chips were subjected to steam explosion 25 kg/$cm^2$, for 6 min. The exploded woods were treated by the single or multi-stage chemical process with sodium hydroxide, sodium hypochlorite and sodium chlorite. The multi-stage treatment of exploded wood can be successfully removed lignin. Enzymatic hydrolysis rate of substrate varied from 25% for exploded wood to about 80% for the multi-chemical treated exploded wood. The enzymatic susceptibility was different among wood species. The multi chemical treatment of the exploded wood resulted in the high rate of glucose in the enzymatic hydrolyzate. Cellulase adsorption increased at high lignin content of substrates, while crystallinity, pore area and specific surface area of substrates did not affected enzyme adsorption. According to the proposed pretreatment and saccharification process in this study, it can be acquired about 37~40 kg of glucose from 100 kg of hardwood.

  • PDF

Preparation of PAN-based Activated Carbon Fibers by Physical Activation (물리적 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 임연수;김기원;정승훈;김기덕;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1016-1021
    • /
    • 1999
  • In this study activated carbon fibers were prepared from PAN-based carbon fibers by physical activation with steam or carbon dioxide. The variations in specific surface area amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. in steam activation BET surface area of about 1019 m2/g was obtained after 77% burn-off while carbn dioxide activation produced ACF with 694m2/g of BET surface area after 52% burn-off. However carbon dioxide activation produced at a similar degree of activation higher micropore volume(0.37 cc/g) and amount of iodine adsorption (1589mg/g) than steam activation. Nitrogen adsorption isotherms for (PAN based activated carbon fibers that prepared by physical activation were of type I in the Brunauer-Deming-Deming-Teller classification

  • PDF

Application of Response Surface Methodology (RSM) on Adsorption of Cs Ion in Aqueous Solution with Zeolite X Synthesized from Coal Fly Ash (석탄비산재로 합성한 제올라이트 X에 의한 수중의 Cs 이온 흡착에 반응표면분석법 적용)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2017
  • The batch experiments and response surface methodology (RSM) have been applied to the investigation of the Cs adsorption with zeolite X synthesized using coal fly ash generated from the thermal power plant. Regression equation formulated for Cs adsorption was represented as a function of response variables. The model was highly relevant because the decision coefficient ($r^2$) was 0.9630. It was confirmed from the statistical results that the removal efficiency of Cs was affected by the order of experimental factors as pH > Cs concentration > temperature. The adsorption kinetics were more accurately represented by a pseudo second-order model. The maximum adsorption capacity calculated from the Langmuir isotherm model was $151.52mg\;g^{-1}$ at 293 K. Also, according to the thermodynamic parameters calculated from Vant Hoff equation, it could be confirmed that the adsorption reaction was an endothermic reaction and a spontaneous process.

Synchrotron X-ray Powder Diffraction Study of CFC-13 Loaded Zeolite LSX (제올라이트 LSX에서의 CFC-13 분자체 흡착에 관한 결정학적 연구)

  • Lee, Yong-Jae;Lee, Jong-Won;Yoon, Ji-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.307-312
    • /
    • 2008
  • Rietveld analysis using synchrotron X-ray powder diffraction data collected at 15 K reveals that CFC-13 ($CF_{3}Cl;$ chlorotrifluoromethane) sorbed on Na,K-LSX binds through fluorine to sodium ions around the single 6-ring aperture in the supcrgage.

Adsorption properties of magnesium oxide matrix using anthracite and vermiculite (안트라사이트와 버미큘라이트를 혼입한 산화마그네슘 경화체의 흡착특성)

  • Kim, Dae-Yeon;Pyeon, Su-Jeong;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.224-225
    • /
    • 2018
  • Modern people are more interested in the indoor environment as they spend more time indoors than in the past. Among the air pollutants in the indoor air, ladon gas is a colorless, tasteless, odorless, inert gas produced by nuclear decomposition of naturally occurring uranium in rocks and soils. It has been proven that ladon gas is introduced into the room through cracks on the floor of the building or basement wall, and it causes various diseases such as lung cancer when exposed to radon during human breathing. The US Environmental Protection Agency (EPA) specifies 4pCi / L as a necessary measure for radon, and the Korea Environmental Protection Agency has implemented comprehensive indoor radon management measures since 2007. Therefore, in this study, we intend to adsorb and reduce radon in indoor air pollutants.

  • PDF