• Title/Summary/Keyword: 흡착분배계수

Search Result 85, Processing Time 0.026 seconds

Influence of Solution pH on Pyrene Binding to Sorption-Fractionated and Kaolinite-Bound Humic Substance

  • Hur Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.61-69
    • /
    • 2005
  • Changes in pyrene binding by dissolved and kaolinite-associated humic substances (HS) due to HS adsorptive fractionation processes were examined using purified Aldrich humic acid (PAHA) at different pH (4, 7 and 9). Irrespective of solution pH, molecular weight (MW) fractionation occurred upon adsorption of PAHA onto kaolinite, resulting in the deviation of residual PAHA MW from the original MW prior to sorption. Variation in $K_{OC}$ by bulk PAHA was observed at different pH due to relative contributions of partitioning and size exclusion effects (i.e., specific interactions). For all pH conditions investigated, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions $(K_{OC}(res))$ were different from the original dissolved PAHA $K_{OC}$ value $(K_{OC}(orig))$ prior to contact with the kaolinite suspensions. Positive correlations between pyrene $(K_{OC}(res))$ and weight-average molecular weight $(MW_W)$ for residual PAHA fractions were observed for pH 7 and 9. However, such a positive correlation was not found at pH 4 due to the absence of the dramatic fractionation observed for high pH conditions (i.e., exclusive fractionation with respect to higher MW), suggesting that actual MW distribution pattern is more important for sorption-fractionated HS than the composite MW value. For adsorbed PAHA, conformational changes of PAHA upon adsorption seem to be important for the extent of pyrene binding. At relatively high pH (7 and 9), lower extent of pyrene binding was observed for adsorbed PAHA versus nonadsorbed PAHA. The conformation effects were more pronounced at higher pH.

Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater (철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술)

  • Yoon, Ji-Young;Ko, Kyung-Seok;Yu, Yong-Jae;Chon, Chul-Min;Kim, Gyoo-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.589-601
    • /
    • 2010
  • Recently it has been frequently reported arsenic contamination of geologic origin in groundwater. The iron-impregnated ranular activated carbon (Fe-GAC) was developed for effective removal of arsenic from groundwater n the study. Fe-GACs were prepared by impregnating iron compounds into a supporting medium (GAC) with 0.05 M iron nitrate solution. The materials were used in arsenic adsorption isotherm tests to know the effect of iron impregnation time, batch kinetic tests to understand the influence of pH, and column tests to evaluate for the preliminary operation of water treatment system. The results showed that the minimum twelve hours of impregnation time were required for making the Fe-GAC with sufficient iron content for arsenic removal, confirmed by a high arsenic adsorption capacity evaluated in the isotherm tests. Most of the impregnated iron compounds were iron hydroxynitrate $Fe_4(OH)_{11}NO_3{\cdot}2H_2O$ but a mall quantity of hematite was also identified in X-ray diffraction(XRD) analysis. The batch isotherms of Fe-GAC for arsenic adsorption were well explained by Langmuir than Freundlich model and the iron contents of Fe-GAC have positive linear correlations on logarithmic plots with Freundlich distribution coefficients ($K_F$ and Langmuir maximum adsorption capacities ($Q_m$. The results of kinetic experiments suggested hat Fe-GAC had he excellent arsenic adsorption capacities regardless of all pH conditions except for pH 11 and could be used a promising adsorbents for groundwater arsenic removal considering the general groundwater pH range of 6-8. The pseudo-second order model, based on the assumption that the ate-limiting step might be chemisorption, provided the best correlation of the kinetic experimental data and explained the arsenic adsorption system f Fe-GAC. The column test was conducted to valuate the feasibility of Fe-GAC use and the operation parameters in arsenic groundwater treatment system. The parameters obtained from the column test were the retardation actor of 482.4 and the distribution coefficient of 581.1 L/mg which were similar values of 511.5-592.5 L/mg acquired from Freundlich batch isotherm model. The results of this study suggested that Fe-GAC could be used as promising adsorbent of arsenic removal in a small groundwater supply system with water treatment facility.

Aging Effects On Partitioning Coefficients of Cd, Cu, and Zn in Metal-spiked Soils (토양에 유입된 카드뮴, 구리, 아연의 시간에 따른 분배 계수의 변화)

  • Kim, Bo-Jeong;McBride, Murray B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • Temporal changes of metal solubility have been repeatedly observed in soils equilibrated with metal salt solutions. This phenomenon is known as aging, yet factors that affect the degree of metal aging remain largely unexamined. In this study, we compared the extent of aging on metal partitioning depending on soil, metal, and metal loading. Five soils spiked with four levels of Cd (2.5-20 mg ${kg}^{-1}$), Cu, and Zn (50-400 mg ${kg}^{-1}$) salt solutions were aged in the laboratory up to 1 year. The partitioning coefficient ($K_d$) of each metal was calculated from the ratio of total to dissolved metal concentration in samples collected at times ranging from 1 day to 1 year. The highest $K_d$ values for Cd, Cu and Zn were recorded in a Histosol, Andisol, and fine-textured Alfisol, respectively, whereas the lowest $K_d$ was recorded for an Oxisol and coarsetextured Alfisol. For all soils, a pattern of increasing Kd with aging was evident for Cd and Zn, but not Cu. Rapid Cu sorption was limited when dissolved organic matter was high in soils. In highly-retentive soils, $K_d$ values seemed to be insensitive to metal loading, although a longer period was required for the higher metal loadings to reach the same degree of metal aging as the lower loadings. In soils with low sorption capacity, the $K_d$ values were determined more by metal loading than by aging. Therefore, marked differences can be expected in the degree of metal aging in spiked soils by the soil type, metal and amount of metal added.

Estimation of Nonlinear Adsorption Isotherms and Advection-Dispersion Model Parameters Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 흡착 식 및 이류-확산 모델 파라미터 추정)

  • Do, Nam-Young;Lee, Seung-Rae;Park, Hyun-Il
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.41-53
    • /
    • 2006
  • In this study, estimation of nonlinear adsorption isotherms(Langmuir & Freundlich adsorption isotherm) and advection-dispersion model parameters was conducted using genetic algorithm(GA) for Zn and Cd adsorption. Estimated parameters of nonlinear adsorption isotherms, which were obtained from the optimization process using genetic algorithm(GA), are nearly same with the parameters obtained from a linearization process of the nonlinear isotherms. Estimated effective diffusion coefficients, which were obtained from a finite element analysis of the advection-dispersion model and an optimization procedure using the genetic algorithm, for the metals were approximately in the order of $10^{-7}cm^2/s$ which could be obtained based on the linear distribution coefficient. The effective diffusion coefficients based on the nonlinear retardation factors were in the range of $10^{-6}{\sim}10^{-5}cm^2/s$. As a result, the correlation coefficient obtained between the measured and calculated concentration was over 0.9 which means that the genetic algorithm should be successfully applied to estimate the unknown parameters of the nonlinear adsorption isotherms and advection-dispersion model.

  • PDF

Adsorption and Oxidation of Polychlorinated Phenols onto Transition Metal Oxides (I). Adsorption Characteristics and Reductive Dissolution of ${\sigma}-MnO_2$(s) (전이금속산화물에 대한 다염소치환페놀류의 흡착과 산화 (제 1 보). ${\sigma}-MnO_2$(s)의 흡착특성과 환원성 용해)

  • Jong Hoon Yun;Jong Wan Lim;Heung Lark Lee;Sang Oh Oh;Sun Haing Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 1991
  • Adsorption and oxidation of polychlorinated phenols by suspended ${\sigma}-MnO_2$ in aqueous solution have been studied. Of the proposed mechanism, adsorption reaction of chlorophenols onto ${\sigma}-MnO_2$(s) depended upon the pH of the solution and the concentration of chlorophenol. Adsorption isotherms showed a reasonably good fit to the Langmuir isotherm. From the pH dependence of adsorption partition coefficient and the linear relationship between octanol-water partition coefficient and adsorption partiton coefficient of chlorophenol, it is estimated that adsorption is dominated by its hydrophobicity. The rate of electron transfer reaction evaluated from the rate of reductive dissolution of ${\sigma}-MnO_2$(s) depended linearly upon the concentration of chlorophenol and the pH of medium. Observed rate constants ($K_0$) of the meta-substituted chlorophenol were lower than that of the ortho-or para-chlorophenol because of resonance effect of chlorophenoxy radical. It is indicated that this radical is produced in the adsorption process and the electron transfer reaction is rate determining.

  • PDF

Influence of Temperature and Affinity of Disperse Dye on Dyeing of PET(Polyethylene Terephthalate) Microfiber (PET 초극세사 염색에서 분산염료의 친화력과 온도 의존성)

  • Lee, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.532-540
    • /
    • 2019
  • PET microfibers with various diameters (0.5, 0.2, 0.06, and 0.01 dpf) were dyed with a dispersed dye (C.I. Disperse Blue 56) at various temperatures. The dyeing process was conducted under infinite dyebath conditions at constant temperatures. The effects of the dyeing temperature and diameter on the partition coefficient, affinity, and diffusion coefficient of disperse dyes were studied. The curve of isotherms was fitted well to Nernst-type model in a large range of initial dye concentrations. At the same temperature, the partition coefficient and affinity decreased with increasing sample diameter due to the increase in surface area. At all deniers, the partition coefficient and affinity decreased with increasing temperature because the dyeing process is an exothermic reaction. In addition, the decrease in radius of the sample gives rise to a decrease in the heat of dyeing. The fine diameter of the sample resulted in an increased surface area but decreased space between the microfibers. Consequently, decreasing the diameter of the microfibers leads to a decrease in the diffusion coefficient. At the same diameter, the diffusion coefficient increased with increasing temperature because of rapid dye movement and the large free volume of the sample inside. In addition, thermal dependence of the diffusion coefficient increased when the diameter of the sample increased.

Fracture Flow of Radionuclides in Unsaturated Conditions at LILW Disposal Facility (불포화 암반 파쇄대를 통한 핵종 이동)

  • Kim, Won-Seok;Kim, Jungjin;Ahn, Jinmo;Nam, Seongsik;Um, Wooyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.465-471
    • /
    • 2015
  • Adsorption experiments for radionuclides such as $^3H$, $^{90}Sr$ and $^{99}Tc$ were conducted using fractured rock collected in unsaturated zone. The released radionuclide through artificial barrier from the near surface repository can be transported by the flow of rainfall or pore water through fractures in unsaturated zone and reach to groundwater flow. Therefore, it is important to investigate transport behavior (retardation) of radionuclides through fractured rock for the safety assessment and long-term performance of repository. Fractured rock samples were collected and characterized by X-ray microtomography (XMT) analysis, which can be used to develop a more robust unsaturated fracture transport model. When fracture-filling materials are exist, distribution coefficient of $^{90}Sr$ is higher than without fracture-filling materials. In this study, batch sorption distribution coefficient ($K_d$) of radionuclide was determined and used to increase our understanding of radionuclide retardtion through fracture-filling materials.

Adsorption Characteristics of the Herbicide Mefenacet in Soil (제초제 Mefenacet의 토양 중 흡착 특성)

  • Kim, Sung-Min;Cho, Il-Kyu;Lee, Eun-Young;Park, Sun-Hwa;Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The adsorption characteristics of [$^{14}C$] mefenacet were investigated with six types of soil collected from different locations. The equilibrium time for adsorption was five hours. The adsorption coefficient(Kf) of Namwon series (volcanic ash soil) showed the highest value of 89.2 while Daejeon series (loamy sand) showed the lowest value of 2.37. The Kf values decreased in order of silty clay loam > silty loam > loamy sand > sandy loam, and the effect of soil properties on the adsorption of mefenacet in soil increased in order of clay mineral < CEC < organic matter. No significant effect was observed by the change of soil pH. The ground water ubiquity scores (GUS index) were $1.20{\sim}1.77$ in three types of soil while $1.81{\sim}2.42$ in the others, indicating that the former group belonged to nonleachers and the latter group to the transitional. Mefenacet in the test soil series seemed to have low possibility of contaminating ground water.

Prediction of Organic Acid Chromatogram in High Performance Ion Chromatography (고성능 이온 크로마토그래피에서 유기산의 크로마토그램 예측 연구)

  • 원혜진;한선호;박양순;조기수;김인호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • In order to predict the chromatogram for organic acid in ion chromatography, Langmuir isotherm parameters were obtained by Retention Time Method (RTM) and moment method. Ion chromatography analysis for formic acid was performed and compared with theoretically predicted profiles under isocratic condition. Band profiles were estimated with the equilibrium-dispersive model of chromatography using a PDEsolver Macsyma . The relationship between the characteristics of chromatogram and the variable operating condition in chromatography such as the flow rate, ionic strength and injection volume was studied. Satisfactory agreement was observed between the experimental and the estimated chromatograms with parameters obtained form the moment method.

  • PDF

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.