• Title/Summary/Keyword: 흡입압력

Search Result 231, Processing Time 0.03 seconds

고진공펌프의 상태진단 시스템

  • Jeong, Wan-Seop;Nam, Seung-Hwan;Kim, Wan-Jung;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.101-101
    • /
    • 2012
  • 본 논문은 현재 제품화 단계로 진행 중인 터보 분자펌프(turbo-molecular pump, TMP)와 극저온 펌프(cryopump)의 고장 방지 및 예지 보수를 위한 상태 진단 시스템에 대하여 소개를 한다. 본 상태 진단 시스템은 고진공 펌프들의 다중 상태변수 즉 흡/배기부의 진공 압력, 부위별 온도, 소비 전류(혹은 전력), 그리고 부위별 진동 신호들을 실시간으로 측정하는 상태변수 수집장치, 수집된 시계열 상태변수들이 저장된 database, 그리고 저장된 상태변수를 이용한 고진공펌프의 상태진단 프로그램으로 구성되어 있다. 금번 연구에서 구축한 상태변수 체계의 특징 중 하나는 진동신호를 상태변수로 측정하여 이를 상태진단에 활용하는 점이 기존의 접근방법과 상이한 점이다. 실시간 신호 수집장치는 NI사 PXI 시스템 기반의 16채널 24-bit 동시 전압신호 측정 모듈, 8부위의 온도 측정장치(Lakeshore 218S, RS-232C 통신), 그리고 펌프의 소비전류/전력 측정장치(Hioki 3169, RS-232C), 그리고 고진공 펌프의 흡입 및 배기구의 진공도 측정장치로 구성하였다. 신호 수집용 프로그램은 NI사 Labview를 이용하여 작성하였다. 본 장치는 Nano-Fab 센터의 협조 하에 turbo-molecular 펌프와 cryopump측정 단에 각각 1대를 설치 완료하였으며 현재까지 운용 중이다. PC에 저장된 시계열 상태변수 database는 기 개발된 적응형 인자모델을 이용한 매개변수로 변환되며, 상태진단은 변환된 매개변수를 이용하여 수행할 예정이다.

  • PDF

A Study on the Fuel Behavior and Mixture Formation in the Early Injection Timing of GDI Injector (직분식 가솔린 인젝터의 흡입 행정 분사시의 연료 거동 및 혼합기 분포 특성에 관한 연구)

  • Lee, Chang-Hui;Lee, Gi-Hyeong;Bae, Jae-Il;Baek, Seung-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1138-1144
    • /
    • 2002
  • Recently GDI(Gasoline Direct Injection) engine is spot-lighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. Spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is varied with crank angle. In this experimental study, two types of visualization system such as laser scattering method and schlieren method were developed to clarity the spray behavior during on intake stroke. As the ambient pressure increases, thepenetration length and spray angle show a tendancy to decrease due to rising resistance caused by the drag force of the ambient air. Distribution of injected fuel on intake stroke has a significant effect on homogeneous mixture in the cylinder. These results provide the information on macroscopic wall-wet growth in the cylinder and design factors for developing GDI injector.

Numerical Analysis of Flow Characteristics within Blades for Design Parameters of Impulse Supersonic Turbine Blade (충동형 초음속 터빈 익렬의 설계 변수에 따른 익렬내 유동 특성에 관한 수치적 연구)

  • 신봉근;정수인;김귀순;이은석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.62-72
    • /
    • 2004
  • In this paper. firstly, numerical results were compared with experimental results to verify accuracy of the results. It is found that the numerical results show good agreements with experimental result. Next, computations about flow within blades for design parameters such as radius of the pressure and suction side's curvature and pitch-chord ratio have been performed. It is found that the flow and performance characteristics mainly depend on shocks occurred at the leading edge of blades and the end of nozzle and separations occurred inside the flow passage. And shock of nozzle and separations depend upon area of flow passage and shocks of blade are affected by the number of blades occupied by a nozzle.

Analytical Study on Performance Parameters of High Speed Propulsion (Ramjet/Scramjet) (초고속 순항 추진기관(램제트/스크램제트)의 성능인자에 대한 해석적 연구)

  • Byun Jong-Ryul;Sung Hong-Gye;Yoon Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper presents a theoretical analysis of a ramjet and scramjet engine according to flight Mach numbers. The main objective of this study is to give physical understanding on the performance parameters and to provide a more unified treatment of the fundamentals of ramjet and scramjet propulsion, mainly based on analytical methods. The effects of flight Mach number, inlet characteristics, and combustion on the performance of ramjet and scramjet are analysed. The cycle analysis are conducted on both combustors with constant pressure and with constant cross-section area, on which comparisons are made. Also the optimal Mach number at the entry of the combustor is studied.

  • PDF

Internal Flow Aerodynamic Test of a Mach 5 Scramjet Engine (마하 5 스크램젯 엔진의 내부 유동 공력 시험)

  • Yang, In-Young;Lee, Yang-Ji;Kim, Young-Moon;Lee, Kyung-Jae;Kang, Sang-Hoon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.584-587
    • /
    • 2011
  • An internal flow aerodynamic test was performed for a Mach 5 scramjet engine. The test was done without fuel injection, as a preliminary test for the combustion test. Test engine is an engineering model with intake cross-section of $70mm{\times}200mm$ and total length of 1.7m. Test facility is a blowdown-type, high enthalpy, hypersonic facility. 19 pressures were measured through the holes on the model surface along the engine internal flow passage. It was found that the facility start is possible, and also supersonic flow is maintained inside the engine.

  • PDF

A Study on Change of Soil-Water Retention Curve with Different Net Confining Pressures and Porosities using a Suction-Saturation Control Technique (흡입력-포화도 조절 기법을 이용한 불포화토의 함수특성곡선에 미치는 간극비 및 순구속압력의 영향 연구)

  • Lee, Joon-Yong;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.93-103
    • /
    • 2012
  • A suction-saturation control technique based on flow pump system was developed to investigate hydraulic properties in unsaturated soils. The flow pump system is designed based on the principle of the axis-translation technique and triaxial equipment, and gives the suction-time and suction-saturation curves, the primary relationship needed for interpreting the response of unsaturated soils and link between theory and the material properties in unsaturated soil mechanics. Using the suction-saturation control technique, suction-time relationship and soil-water retention curve (SWRC) during hydraulic hysteresis were investigated with different net confining pressures and porosities. Three types of soils-two sands and a silt were used in this paper. This paper showed the effect of the hysteresis on the SWRC due to different net confining pressures and porosities. This means that a careful decision must be made as to which condition is to be modeled, since the delicate difference of the conditions in physical modeling can cause the different experimental output.

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

An experimental study on the dynamic behavior in an aero-valved pulsating combustor (공기밸브형 맥동연소기의 동적 특성에 관한 실험적 연구)

  • 임광열;최병륜;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.846-855
    • /
    • 1987
  • The experimental study was carried out to investigate the performance characteristics of the aero-valved pulsating combustor designed to increase the practical applications of the system. The geometric effect on the stable condition and the dynamic behavior of the system is identified. The equivalence ratio, the inflammability limit, the operating frequency, and thrust were also measured when the system oscillated stably. It is found that while the operating condition is sensitive to the diameter of the inlet pipe and the length of the tailpipe, the maximum value of the turn down ratio was obtained up to 3.2. The measured air flow rate shows that the equivalence ratio increases monotonously with the increasing fuel flow rate and decreasing air inlet diameter and tailpipe length. The measured operating frequency can be approximated by the simple linear equation and the discrepancy is within five percent. The system produced the maximum total thrust of 14N and the minimum specific fuel consumption of 0.155 Nm$^{3}$/h.N when the total thrust was 13N.

Experimental Study to Investigate the Flow Characteristics of a Supersonic Turbine Depending on the Relative Positions of Nozzle and Cascade (노즐과 익렬의 상대 위치에 따른 초음속 터빈의 유동특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.30-38
    • /
    • 2010
  • Experiments were performed to investigate the flow characteristics of a partial admission supersonic turbine depending on the relative positions of nozzle and cascade. The flow was visualized by a Schlieren system. The static pressures at the turbine cascade inlet, passage and outlet were measured by pressure transducers. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions of the supersonic turbine were observed by the experiments. And the flow characteristics in the supersonic turbine as the relative positions were observed.

Effects of a Bearing Strut on the Performance of an Inducer for Turbopumps (베어링 지지부가 터보펌프용 인듀서의 성능에 미치는 영향)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1022-1027
    • /
    • 2007
  • Experimental and computational studies on a turbopump inducer with and without a bearing strut were performed to evaluate the effects of a strut on the performance of an inducer. Head rise, efficiency and surface static pressures were measured and compared with computational results. Generally a good agreement is observed between experimental and computational results, but some discrepancies are observed due to complex flow features such as backflows at the inlet and strut/inducer interactions. For the flow rates where the backflow region is large, installing a strut enhanced the hydraulic performance of the inducer by diminishing the size of the backflows. The results also show that the strut has negligible effect on the suction performance of the inducer.