• Title/Summary/Keyword: 흡입성능

Search Result 356, Processing Time 0.023 seconds

Heat Recovery System from Chamber of Agricual Products Dryer (농산물건조기의 배풍열 재이용 기술에 관한 연구)

  • Paek, Y.;Kim, Y.J.;Kang, G.C.;Ryou, Y.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.241-246
    • /
    • 2002
  • 본 연구는 농산물을 건조할 때 배풍구로 버려지는 열을 회수하여 건조열원으로 재이용할 수 있는 배풍열 회수장치를 개발하여 연료절감 및 열회수장치의 성능을 분석한 연구 결과 다음과 같은 결론을 얻었다. 가. 농산물건조기의 열수지를 분석한 결과 투입열량을 100%로 하였을 경우, 배기열은 13.2%, 배풍역량 77.7%, 관류열량은 9.1%로 나타났다. 나. 고추를 건조시 배풍구입구온도가 55-6$0^{\circ}C$일 때 배풍구 출구온도 41-43$^{\circ}C$, 일때 흡입구 입구온도는 25-28$^{\circ}C$, 흡입구 출구온도는 41-43$^{\circ}C$로 나타나 건조실로 41-43$^{\circ}C$의 높은 온도를 투입할 수 있었다. 다. 배풍열 량이 단위 시간당 4700kca1에서 6000kca1로 증가할 때, 흡입 열량은 2200kca1에서 3000kca1로 나타났다. 라. 고추의 초기함수율이 80%에서 15%까지 떨어지는데 관행건조는 약 27시간이 경과했으며, 배풍연회수건조를 할 경우는 약 24시간이 경과했으며 그 결과 배풍열 회수건조가 약 3시간정도 소요시간이 단축되었음을 알 수 있었음. 마. 배풍열 회수장치를 사용하여 농산물건조기 투입량의 47%, 배풍열량의 64%의 열량을 회수할 수 있었다. 바. 배풍열 회수 농산물건조기 성능시험 결과 고추 100kg 건조시 연료소모량은 43%, 건조 소요비용은 21% 감소시킬 수 있었다.

  • PDF

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Ta-Eun;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.786-792
    • /
    • 2010
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

  • PDF

Performance Test of Pod-type Waterjet Propulsion System (Pod형 물분사 추진장치 성능시험 연구)

  • Kim, K.S.;Song, I.H.;Ahn, J.W.;Moon, I.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.21-30
    • /
    • 1997
  • This paper describes the experimental method of a pod-type waterjet propulsion system in a towing tank and shows the experimental analysis and test results of a designed waterjet propulsion system to be used for a hybrid high speed craft. The cruising performance of this craft is estimated from the results of the hull resistance test and waterjet test under the assumption that the interaction between the hull and the inlet pod is very small. A pod-type waterjet system with an axial pump was designed and a stand-alone waterjet experimental system was developed. Useful data such as the pump performance, the jet efficiency, the losses of inlet duct and nozzle were obtained. Test results show a good agreement with the design requirement.

  • PDF

Performance characteristics of hot-gas bypass refrigerator with the variation of operation conditions (운전조건 변화에 따른 hot-gas 바이패스 냉동장치의 성능 특성)

  • Baek, Seung-Moon;Son, Chang-Hyo;Heo, Jeong-Ho;Choi, In-Soo;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1021-1026
    • /
    • 2014
  • In this paper, among various systems applying hot-gas bypass control, outdoor temperature, outlet temperature of water cooler, superheating and subcooling degree, which are the factors affecting the performance of the system bypassing hot-gas to evaporator inlet were analyzed. The main results were summarized as following. Frist of all, performance of refrigeration system bypassing hot-gas to evaporator inlet was affected by outdoor temperature, outlet temperature of water cooler, superheating and sub cooling degree. Thus, providing basic planning date of refrigeration system obtained through optimization of variables is expectable. Thus, providing the basic design data of refrigeration system can be offered by performing the optimization of these variables. Also, the feasibility of this refrigeration system proposed in this paper was obtained by analyzing operating characteristics of the system bypassing hot-gas to evaporator inlet.

Study on Performance Evaluation of Mixing Section of Ejector using CFD simulation (CFD 시뮬레이션을 이용한 이젝터 혼합실 형상에 따른 성능 평가에 관한 연구)

  • Sin, Won-Hyeop;Kim, Min-Woo;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2610-2616
    • /
    • 2014
  • An ejector is a kind of pump which is using pressure energy of high pressure fluid. This study aims to investigate performance influencing according to change the ejector mixing section shape using CFD simulation by Finite Volume Method. Optimum conditions were suggested 3 kind of variable such as nozzle diameter, nozzle length, distance from nozzle tip to the diffuser inlet. The results, It was confirmed that the diameter of the nozzle was the greatest effect in performance of the ejector. The diameter of the nozzle get smaller, mixing ratio was increased. On the other hand, nozzle length, distance from nozzle tip to the diffuser inlet had little effect on performance. It was proposed specific Mixing section, Nozzel diameter 23.8mm using the Artificial Neural Network.

A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump (산업용 수직펌프의 흡입성능 향상 연구)

  • Chung, Kyung-Nam;Park, Jong-Hwoo;Kim, Yong-Kyun;Kim, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

Put Effect of the inducer scale on the suction performance similarity of a turbopump (인듀서의 크기가 터보펌프의 흡입성능 상사에 미치는 영향에 관한 연구)

  • Kang, Byung Yun;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • An inducer is forward-attached to an impeller to improve the suction performance. This paper described the experimental and numerical investigations on the concept of NPSH similarity about the inducer scale. As Reynolds number decreased for the same scale inducer, the hydraulic performance is slightly reduced because of the viscosity. The suction performance similarity is in good agreement. For different scale inducers, the NPSH similarity did not follow the conventional rule which is proportional to the square of the inducer diameter. A cavity of two times scale inducer grows faster under cavitation inception, and the head is more drop as the fluid passes blades. Because of the simplified cavitation model and vapor pressure, the NPSH similarity dose not have an accuracy. This study suggested an empirical formula for the NPSH similarity.

A Study on the Comparison of Aspirating Smoke Detector and General Smoke Detector Detection Time according to the Fire Speed and Location of Logistics Warehouse through FDS (화재시뮬레이션을 통한 물류창고 화재 속도와 위치에 따른 공기흡입형 감지기와 일반 연기 감지기 감지시간 비교에 관한 연구)

  • SangBum Lee;MinSeok Kim;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.608-623
    • /
    • 2023
  • Purpose: Recently, the number of logistics warehouses has been on the rise. In addition, as the number of such logistics warehouses increases, number of fire accidents also increases every year, increasing the importance of preventing fires in large logistics warehouses. Method: investigated aspirating smoke detectors that are emerging as adaptive fire detectors in logistics warehouses. Then, through fire simulation (FDS), logistics warehouse modeling was conducted to compare and analyze the detection speed of general smoke detectors and aspirating smoke detectors according to four stages of fire growth and three locations of fire in the logistics warehouse. Result: Growth speed in Slow-class fires and Mediumclass fires, the detection speed of aspirating smoke detectors was faster regardless of the location of the fire. However, in Fast-class fires and Ultra-Fast-class fires, it was confirmed that the detection speed of general smoke detectors was faster depending on the location of the fire. Conclusion: It was confirmed that the detection performance of the aspirating smoke detector decreased as the fire growth speed increased and the location of the fire occurred further than the receiver of the aspirating smoke detector. Therefore, even if an aspirating smoke detector is installed in a warehouse that stores combustibles with high fire growth rates, it is judged that an additional smoke detector is attached far away from the receiver of the general smoke detector to increase fire safety.

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Park, Tae-Hyoung;Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.426-437
    • /
    • 2007
  • off-design conditions, supersonic air inlets often encounter the problem of aerodynamic instability, called inlet buzz, which causes the significant degradation of the engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. It is understood the mechanism of buzz onset as proving that the origin of buzz is the flow choking induced by separation at the intake throat. Also it is observed the intermittent and continuous buzz mode as area ratio varies and understood the transition process through this study. The buzz frequency become to be higher as decreasing the area ratio, but for each area ratio, the frequency of pressure oscillation is the same at all points of intake.

The Gross Thrust Estimation Technique of Air-Breathing Engine (공기 흡입 엔진의 총추력 추정 기법)

  • Kim, Jeongwoo;Jung, Chihoon;Ahn, Dongchan;Lee, Kyujoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.97-108
    • /
    • 2018
  • It is definitely important to measure thrust during ground test when developing air-breathing engine, and in case of air-breathing engine, gross thrust should be calculated considering not only the measured thrust but also the force induced by the air flow of engine intake. Also, side thrust like yaw and pitch should be measured and analyzed using multi-component thrust measurement system. Engine performance was accurately evaluated by calculating the gross thrust of air breathing engine precisely which is analyzed from below serial procedure: labyrinth seal isolation, 1-axis gross thrust calculation, develop multi-component thrust measurement system, and side thrust analysis.