• Title/Summary/Keyword: 흡수선량 평가

Search Result 208, Processing Time 0.022 seconds

Evaluation of MTF Image by Target/Filter Combined of X-ray Tube Using Mammography (유방촬영용 X선관 target/filter 조합에 따른 MTF영상평가에 관한 고찰)

  • Yang, Han-Jun;Joo, Mi-Hwa;Ko, Sin-Kwan
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.113-119
    • /
    • 2007
  • It is important to consider the contrast of object in Mammography because an absorption gap between tissues of body and breast in breast is low. This study is to evaluate MTF image with resolution chart according to change of combination of target and filter. The results were as follows : 1. There were significant differences in X-ray energy according to combination of filter(Mo/Mo, Mo/Rh. Mo/Al, Rh/Rh, Rh/Al) and acrylic thickness(2 cm, 3 cm, 4 cm). 2. The value of lp/mm on MTF to 0.5 showed that the sharpness in MTF curve was 2.4 compared to Mo/Mo and 2cm acryl, 2.63 in Mo/Rh and 4 cm acryl, and 2.9 in Rh/Rh and 6cm acryl. 3. The value of lp/mm on MTF showed that the resolution in MTF curve was 6.0 compared to Mo/Mo and 2 cm acryl, 4.60 in Rh/Al and 4cm acryl, and 6.03 in Rh/Al and 6 cm acryl. 4. The value of MTF on 2.5 lp/mm distinguishable visually was 0.48 compared to Mo/Mo and 2 cm acryl, 0.53 in Mo/Rh and 4cm acryl, and 0.59 in Rh/Rh and 6cm acryl. 5. For the evaluation of an image of the mammo-phantom, the score of Mo/Mo was 12 points, Mo/Rh 11, Rh/Rh 10.5, Mo/Al 10, Rh/Al 9.0, respectively.

  • PDF

Improvement on the Method of Estimating Radionuclide Concentrations in Agricultural Products for the Off-Site Internal Dose Calculation for Operating Nuclear Facilities (가동중 원자력 시설 주변 주민의 내부피폭선량 계산을 위한 농산물내 핵종 농도 평가법 개선)

  • Choi, Y.H.;Lim, K.M.;Hwang, W.T.;Choi, G.S.;Choi, H.J.;Lee, C.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.73-90
    • /
    • 2004
  • The Reg. Guide 1.109 model was reviewed against its applicability to calculating radionuclide concentrations in agricultural products for operating nuclear facilities and an improved method was proposed. The model was so modified that the radionuclides deposited since the start of operation could be considered in assessing the root uptake. Translocation factors were introduced in the equation for calculating the concentrations in edible parts due to direct plant deposition. Values specific to Korea were set up for the input parameters of the modified model. The concentrations of $^{54}Mn,\;^{60}Co,\;^{90}Sr\;and\;^{137}Cs$ in rice seeds, Chinese cabbage and radish root were calculated for various hypothetical deposition histories using the Reg. Guide 1.109 model and the modified model with parameter values in the guide and those specific to Korea put in alternately. Through comparisons among the results, it could be expected that the use of the modified model with the input of parameter values specific to Korea would result In a more resonable and realistic assessment.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.

Comparison Evaluation of Image Quality with Different Thickness of Aluminum added Filter using GATE Simulation in Digital Radiography (GATE 시뮬레이션을 사용한 알루미늄 부가필터 두께에 따른 Digital Radiography의 영상 화질 비교 평가)

  • Oh, Minju;Hong, Joo-Wan;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • In X-ray image, the role of filtration through the filter is to reduce the exposure of the patient by using photon which is useful in formation of the image, and at the same time, enhance the contrast of the image. During interaction between photon and object, low energy X-rays are absorbed from the site of a few cm of the first patient's tissue, and high energy X-rays are the one which form the image. Therefore, the radiation filter absorbs low energy X-ray in order to lower the exposure of the patient and improve the quality of the image. The purpose of this study is to compare the effect on the image quality by differences of added filter through simulation image and actual radiation image. For that purpose, we used Geant4 Application for Tomographic Emission (GATE) as a tool for Monte Carlo simulation. We set actual size, shape and material of Polymethylmethacrylate (PMMA) Phantom on GATE and differentiated the parameter of added filter. Also, we took image of PMMA phantom with same parameter of added filter by digital radiography (DR). Than we performed contrast-to-noise ratio (CNR) evaluation on both simulation image and actual DR image by Image J. Finally, we observed the effect on image quality due to different thickness of added filter, and compared two images' CNR evaluation's transitions of change. The result of this experiment showed decreasing in the progress of CNR on both DR and simulation image. It is ultimately caused by decreasing in contrast on image. In theory, contrast decrease with kVp increased. Given that condition, this study found out that filter makes not only decreasing total dose by absorbing low energy of X-ray, but also increasing average energy of X-ray.

Combination Effect of Packaging and Electron Beam Irradiation on Quality Traits of Fermented Sausages During Storage (전자선조사와 포장방법이 발효소시지의 냉장 저장 중 품질 특성에 미치는 영향)

  • Lim, D.G.;Lee, Moo-Ha
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.539-548
    • /
    • 2007
  • The study was carried out to examine combined effects of packaging and electron-beam irradiation on lipid oxidation and meat color of fermented sausages during storage. Fermented and aged sausages were exposed to electron-beam at 2 kGy. The samples were vacuum or aerobic-packaged with the non-irradiated samples at 4±1℃. Regardless of irradiation, the pH values of vacuum-packaged samples was lower than those of aerobic-packaged ones at 14 day (p<0.05). Total microbes and lactic acid bacteria counts significantly decreased during the storage period (p<0.05). And counts of non-irradiated samples were significantly higher than those of irradiated (2 kGy) samples with aerobic packaging. The TBARS values of 2 kGy-irradiated samples were significantly higher than those of non-irradiated samples. The TBARS values of vacuum packaged samples had lower than those of aerobic-packaged ones (p<0.05). Colors (parameters L*, a* and b* values) tended to decrease as the storage period increased. Redness(a*) and yellowness (b*) of 2 kGy irradiated samples were higher than those of non-irradiated ones (p<0.05). In sensory analysis, irradiated (2 kGy) samples with aerobic packaging had higher off-flavor than non-irradiated ones (p<0.05). Therefore, results indicated that irradiation coupled with vacuum packaging may minimize TBARS values of irradiated sausages during storage.

Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors (표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향)

  • Kang, Seung-gu;Lee, Hyun-chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like $^{99}Tc$ and $^{129}I$ contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of $^{99}Tc$ and $^{129}I$ in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.

Development of $^{166}Ho$-Stent for the Treatment of Esophageal Cancer (식도암 치료용 $^{166}Ho$-Stent 개발)

  • Park, Kyung-Bae;Kim, Young-Mi;Kim, Kyung-Hwa;Shin, Byung-Chul;Park, Woong-Woo;Han, Kwang-Hee;Chung, Young-Ju;Choi, Sang-Mu;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • Purpose: Esophageal cancer patients have a difficulty in the intake of meals through the blocked esophageal lumen, which is caused by an ingrowth of cancer cells and largely influences on the prognosis. It is reported that esophageal cancer has a very low survival rate due to the lack of nourishment and immunity as the result of this. In this study a new radioactive stent, which prevents tumor ingrowth and restenosis by additional radiation treatment, has been developed. Materials and Methods: Using ${\ulcorner}HANARO{\lrcorner}$ research reactor, the radioactive stent assembly ($^{166}Ho$-SA) was prepared by covering the metallic stent with a radioactive sleeve by means of a post-irradiation and pre-irradiation methods. Results: Scanning electron microscopy and autoradiography exhibited that the distribution of $^{165/166}Ho\;(NO_3)$ compounds in polyurethane matrix was homogeneous. A geometrical model of the esophagus considering its structural properties, was developed for the computer simulation of energy deposition to the esophageal wall. The dose distributions of $^{166}Ho$-stent were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly on the surface in the form of a cylinder with a diameter of 20 mm and length of 40 mm. As an animal experiment, when radioactive stent developed in this study was inserted into the esophagus of a Mongrel dog, tissue destruction and widening of the esophageal lumen were observed. Conclusion: We have developed a new radioactive stent comprising of a radioactive tubular sleeve covering the metallic stent, which emits homogeneous radiation. If it is inserted into the blocked or narrowed lumen, it can lead to local destruction of the tumor due to irradiation effect with dilatation resulting from self-expansion of the metallic property. Accordingly, it is expected that restenosis esophageal lumen by the continuous ingrowth and infiltration of cancer after insertion of our radioactive stent will be decreased remarkably.

  • PDF

Evaluation of Combine IGRT using ExacTrac and CBCT In SBRT (정위적체부방사선치료시 ExacTrac과 CBCT를 이용한 Combine IGRT의 유용성 평가)

  • Ahn, Min Woo;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Lee, Doo Sang;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.201-208
    • /
    • 2018
  • Purpose : The purpose of this study is to compare and analyze the set-up errors using the Combine IGRT with ExacTrac and CBCT phased in the treatment of Stereotatic Body Radiotherapy. Methods and materials : Patient who were treated Stereotatic Body Radiotherapy in the ulsan university hospital from May 2014 to november 2017 were classified as treatment area three brain, nine spine, three pelvis. First using ExacTrac Set-up error calibrated direction of Lateral(Lat), Longitudinal(Lng), Vertical(Vrt), Roll, Pitch, Yaw, after applied ExacTrac moving data in addition to use CBCT and set-up error calibrated direction of Lat, Lng, Vrt, Rotation(Rtn). Results : When using ExacTrac, the error in the brain region is Lat $0.18{\pm}0.25cm$, Lng $0.23{\pm}0.04cm$, Vrt $0.30{\pm}0.36cm$, Roll $0.36{\pm}0.21^{\circ}$, Pitch $1.72{\pm}0.62^{\circ}$, Yaw $1.80{\pm}1.21^{\circ}$, spine Lat $0.21{\pm}0.24cm$, Lng $0.27{\pm}0.36cm$, Vrt $0.26{\pm}0.42cm$, Roll $1.01{\pm}1.17^{\circ}$, Pitch $0.66{\pm}0.45^{\circ}$, Yaw $0.71{\pm}0.58^{\circ}$, pelvis Lat $0.20{\pm}0.16cm$, Lng $0.24{\pm}0.29cm$, Vrt $0.28{\pm}0.29cm$, Roll $0.83{\pm}0.21^{\circ}$, Pitch $0.57{\pm}0.45^{\circ}$, Yaw $0.52{\pm}0.27^{\circ}$ When CBCT is performed after the couch movement, the error in brain region is Lat $0.06{\pm}0.05cm$, Lng $0.07{\pm}0.06cm$, Vrt $0.00{\pm}0.00cm$, Rtn $0.0{\pm}0.0^{\circ}$, spine Lat $0.06{\pm}0.04cm$, Lng $0.16{\pm}0.30cm$, Vrt $0.08{\pm}0.08cm$, Rtn $0.00{\pm}0.00^{\circ}$, pelvis Lat $0.06{\pm}0.07cm$, Lng $0.04{\pm}0.05cm$, Vrt $0.06{\pm}0.04cm$, Rtn $0.0{\pm}0.0^{\circ}$. Conclusion : Combine IGRT with ExacTrac in addition to CBCT during Stereotatic Body Radiotherapy showed that it was possible to reduce the set-up error of patients compared to single ExacTrac. However, the application of Combine IGRT increases patient set-up verification time and absorption dose in the body for image acquisition. Therefore, depending on the patient's situation that using Combine IGRT to reduce the patient's set-up error can increase the radiation treatment effectiveness.

  • PDF