• Title/Summary/Keyword: 흑체판

Search Result 3, Processing Time 0.018 seconds

Simulation of Radiative Property Effects on Radiant Cooling of Opaque Surface (비 투과면 복사 냉각에 대한 복사 물성의 영향 예측)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • The effects of surface radiative properties on the radiant cooling of opaque surfaces under clear sky condition are studied. Two types of surfaces, one gray and the other selective, are compared. For the nighttime cooling, black surface gives the lowest plate temperature and on the other hand the ideal selective surface gives the highest temperature. The reverse is true when there is an insolation. Equivalent radiative heat transfer coefficient of radiant cooling without convection is about $1{\sim}7\;W/m^2-K$ for the range of values studied. The surface with black within the $6{\sim}13\;{\mu}m$ band else zero emissivity could be regarded as a black surface for the nighttime radiant cooling purposes. However, lower band limit of $4\;{\mu}m$ is preferred to $6\;{\mu}m$ for small insolation situations.

Radiant Cooling by the Plate Viewing the Daytime Sky (주간 하늘에 노출된 평판에 의한 복사냉각 실험)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.11-17
    • /
    • 2007
  • The purpose of this study is to check whether the plate temperature could be lower than the surrounding air by using the radiant cooling during the day time in summer at Seoul. Without an insolation shield as this experiment was performed, a few cases were found. The temperatures of the black painted plate are lower than those of the aluminium film coated plate if the following condition exist; no or small insolation over the plate, the wind velocity less than around 2 m/s, and clear sky However if there are insolation over the plate, the temperatures of the aluminium coated plate are lower than the black painted plate. Also, as the wind velocity increases, the plate temperature decreases faster. The temperature response of the small system is much faster than the large system.

Nocturnal Radiant Cooling during the Winter by the Plate Viewing the Sky (겨울 야간 하늘에 노출된 평판에 의한 복사냉각 실험)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • The radiant cooling(RC) effects are studied during the winter night. The plate was viewing the nighttime sky. The data were collected at the rooftop of the Engineering building at the Dongguk University in Seoul, Korea. As observed during the summer night, the plate temperature was lower than ambient temperature under the RC favorable conditions. The parameters under study are the wind velocity, cloud index, and visibility for given system size and surface condition. The results follow the same tendency with these parameters as observed from the previous study for the summer night. As long as the wind velocity is less than around 2 m/s, the radiant cooling was observed with the system under study. In some cases, the radiant cooling temperature differences (RCTD) are higher than those for the summer night. The larger the RCTD as the wind velocity decreases and as the sky becomes clear.