• 제목/요약/키워드: 흐름 응축

검색결과 35건 처리시간 0.019초

알루미늄 다채널 평판관내 R22, R410A, Propane의 흐름 응축 열전달 성능 비교 (Flow Condensation Heat Transfer Coefficients of R22, R410A and Propane in Aluminum Multi-Channel Tube)

  • 박기정;이기영;정동수
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.649-658
    • /
    • 2005
  • Flow condensation heat transfer coefficients (HTCs) of R22, R410, Propane (R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of $0.1\~0.9$ at mass flux of $200\~400kg/m^2s$ and heat flux of $7.3\~7.7kW/m^2$ at the saturation temperature of $40^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within $25\%$ deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than $20\%$ for all data.

알루미늄 다채널 평판관내 R22 대체냉매의 흐름 응축 열전달 성능 비교 (Flow Condensation Heat Transfer Coefficients of R22 Alternative refrigerants in Aluminum Multi-Channel Tube)

  • 이기영;이민행;정동수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.249-255
    • /
    • 2005
  • Flow condensation heat transfer coefficients(HTCs) of R22, R4IO, Propane(R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53 m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of 0.1 ${\sim}$ 0.9 at mass flux of $200{\sim}400$ $kg/m^2s$ and heat flux of $7.3{\sim}7.7$ $kW/m^2$ at the saturation temperature of $4^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within 25% deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than 20% for all data.

  • PDF

탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성 (Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube)

  • 박기정;이민행;박현신;정동수
    • 설비공학논문집
    • /
    • 제19권7호
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of $40{\pm}0.2^{\circ}C$ with mass fluxes of 100, 200, $300kg/m^2s$ and heat flux of $7.3\sim7.7kW/m^2$. The data are obtained in the vapor Quality range of $10\sim90%$. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.

평관과 마이크로 핀관 내 R22, R134a, R407C, R410A의 흐름응축 열전달성능 (Flow Condensation Heat Transfer of R22, R134a, R407C, and R410A in Plain and Microfin Tubes)

  • 조영목;박기호;송길흥;정동수
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.656-663
    • /
    • 2002
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 9.52 mm outside diameter and 1.0 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $40^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/$m^2s$. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 11~l5% and 23~53% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 10~21% for a microfin tube. In general, HTCs of a microfin tube were 2.0~3.0 times higher than those of a plain tube.

초음속 노즐에서 발생하는 응축충격파의 피동제어 (Passive control of condensation shock wave in supersonic nozzles)

  • 김희동;권순범
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포 (Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation)

  • 강희찬;김무환
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

수평 평활관내 R404A와 R152a 냉매 유동의 응축 열전달 계수에 대한 비교 연구 (Comparative Study of Condensation Heat Transfer Coefficients between R404A and R152a Flow in a Horizontal Smooth Tube)

  • 이상용;김만희;이치영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.256-261
    • /
    • 2005
  • In the present experimental study, condensation heat transfer coefficients between R404A and R152a flow in a horizontal smooth tube were compared. The outer and inner diameters of the tube were 9.52 mm and 7.55 mm, respectively, and the heated length was 1045 mm. The mass flux ranged from 150 to 400 $kg/m^{2}s$ and the test section were uniformly heated from 8 to 12. $kW/m^2$. The quality range was from 0.2 to 0.8 at the saturation temperature from 27.3 to $34^{\circ}C$. Experimental condensation heat transfer coefficients increased as the quality and mass flux increased. Modified Dobson and Chato correlation reduced the mean deviation of 5.1% for R404A and 9.4% for R152a than the original correlation$^{(2)}$.

  • PDF

응축충격파와 경계층 간섭의 피동제어(I) (A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(I))

  • 최영상;정영준;권순범
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.316-328
    • /
    • 1997
  • There were appreciable progresses on the study of shock wave / boundary layer interaction control in the transonic flow without nonequilibrium condensation. But in general, the actual flows associated with those of the airfoil of high speed flight body, the cascade of steam turbine and so on accompany the nonequilibrium condensation, and under a certain circumstance condensation shock wave occurs. Condensation shock wave / boundary layer interaction control is quite different from that of case without condensation, because the droplets generated by the result of nonequilibrium condensation may clog the holes of the porous wall for passive control and the flow interaction mechanism between the droplets and the porous system is concerned in the flow with nonequilibrium condensation. In these connections, it is necessary to study the condensation shock wave / boundary layer interaction control by passive cavity in the flow accompanying nonequilibrium condensation with condensation shock wave. In the present study, experiments were made on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of the porosity, the porous wall area and the depth of cavity on the pressure distribution around condensation shock wave. It was found that the porosity of 12% which was larger than the case of without nonequilibrium condensation produced the largest reduction of pressure fluctuations in the vicinity of condensation shock wave. The results also showed that wider porous area, deeper cavity for the same porosity of 12% are more favourable "passive" effect than the cases of its opposite. opposite.

超音速 노즐흐름에 있어서 凝縮이 傾斜衝擊波에 미치는 影響 (Effects of supersonic condensing nozzle flow on oblique shock wave)

  • 강창수;권순범
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.547-553
    • /
    • 1989
  • 본 연구에서는 작동유체로서 수증기와 거동이 유사한 습공기를 대기 흡입식 풍동을 사용하여 원호 노즐로서 팽창시키는 경우에 대하여 응축충격파가 발생하는 흐름이 측정부내에 쐐기를 설치하여 발생시킨 경사충격파에 미치는 영향에 대해 실험적으로 조사하였다.

증기터빈 익렬유동에 관한 실험적 연구 (Experimental Study on Stream Turbine Cascade Flow)

  • 권순범;윤의수;김병지
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.