• Title/Summary/Keyword: 흐름 비등

Search Result 48, Processing Time 0.021 seconds

Anisotropy of Magnetic Susceptibility (AMS) of Anorthositic Rocks in the Hadong-Sanchong Area (하동-산청지역에 분포하는 회장암질암에 대한 대자율 비등방성 연구)

  • Kim, Seong Uk;Choe, Eun Gyeong;Kim, In Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.169-178
    • /
    • 1999
  • Low-field anisotropy of magnetic susceptibility (AMS) was measured with 247 samples from 17 sites of Pre-Cambrian anorthositic rocks in the Hadong-Sanchong area, southwestern part of the Ryongnam Block. Tectonic stress-direction is defined by the minimum susceptibility (k3) direction, and flow-direction by the maximum susceptibility (k1) direction. Five sites rendered self-consistent NW-SE site-mean tectonic stress-direction. Even though a general fold test for every site was not possible due to the homoclinal nature of the bedding attitudes, a site with various bedding attitudes shows far better clustering of the k3-direction before the bedding-tilt correction. The in-situ NW-SE tectonic stress-direction is consistent over the study area and compatible with petrographic foliation observed in metamorphic rocks in and arround the study area, suggesting a regional compressive force acted after the emplacement of the anorthositic rocks. On the other hand, flow-directions obtained from six sites varies from site to site. Strong-field IRM experiments show predominance of titanomagnetites over a small amount of hematite in some samples.

  • PDF

Analysis of the effect of turbulence on the motion of inertial particle using 3D simultaneous PIV,PTV (3차원 동시 PIV, PTV를 활용한 난류가 관성 입자의 거동에 미치는 영향 분석)

  • Park, Hyoungchul;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.281-281
    • /
    • 2022
  • 바닥에서 생성되는 난류는 순간적으로 강한 모멘텀을 바닥에 전달함과 동시에 바닥에 있는 입자를 움직이게 한다. 경계층 내 난류 운동에 대한 분석은 다양한 유사 이송 문제를 이해하기 위해 필수적이며 이에 따라 많은 선행 연구들은 실험실 실험을 통해 해당 연구를 수행하였다. 본 연구에서는 선행 연구에서 사용하지 못했던 진보된 실험 방법을 활용하여 바닥 경계층 내의 난류 운동에 대해 확인하고 해당 운동에 의해 관성 입자의 움직임이 어떻게 발생하는지에 대하여 물리적으로 설명하고자 한다. 다양한 흐름 조건에서 3가지의 입경 크기를 가지는 모래 입자를 가지고 실험을 수행하였으며, 실험 조건별 고해상도 유속장 및 관성 입자의 움직임은 3차원 입자 영상 유속계 (Particle Image Velocimetry; 이하 PIV)와 입자 추적 유속계 (Particle Tracking Velocimetry; 이하 PTV)를 동시에 적용하여 파악하였다. 취득된 3차원 유속장과 입자 궤적을 기반으로 실험 조건별 흐름 및 입자 거동 특성에 대해 분석하였으며, 관성 입자의 움직임을 발생시키는 3차원 난류 운동은 측정된 유속장에서 산정한 Q-criterion 값을 기반으로 도식화하였다. 측정값 내에는 난류 운동에 대한 정보와 더불어 잡음이 포함되어 있으므로 이를 제거하고자 적합 직교 분해 (Proper Orthogonal Decomposition; 이하 POD) 방법을 적용하였다. 그리고 POD로 추출한 유속장을 통해 바닥면 부근에 존재하는 헤어핀 와류 운동 혹은 와류 묶음과 같은 난류 고유 구조를 파악하였다. 해당 와류 운동들의 3차원 난류 특성을 확인하고자 비등방성 불변 지도(anisotropy invariant map)를 활용하였으며 경계층 내부에서 난류의 형태가 흐름 방향으로 늘어진 럭비공 형태임을 확인하였다. 마지막으로, 입자의 움직임을 발생시키는 난류 이벤트를 결정하고자 사방구 분석 (Quadrant analysis) 기법을 적용하였으며 흐름 조건별로 입자를 움직이게 하는 난류 이벤트는 달라짐을 확인하였다.

  • PDF

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

Development of TANK_GS Model to Consider the Interaction between Surface Water and Groundwater (지표수-지하수 상호흐름을 고려한 TANK_GS 모형의 개발)

  • Lee, Woo-Seok;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.893-909
    • /
    • 2010
  • The purpose of this study is to consider the interaction between surface water and groundwater in basin scale by developing TANK_GS model. The soil moisture structure of tank model with 3 tanks is improved to simulate the appropriate stream-aquifer interactions. Maximum likelihood method is applied to calibrate parameters with variance functions to deal with heteroscedasticity of residuals. The parameters of improved TANK_GS model and variance function are simultaneously estimated by Simulated Annealing method, a global optimization technique. The results of TANK-GE are compared to those of the SWMM-GE model which had been developed to consider the stream-aquifer interactions. The new TANK_GS model and SWMM-GE model are applied to Gapcheon basin, which belongs to Geum River basin. TANK_GS model showed better model performance compared to the original TANK model and characterized the relationship of stream-aquifer interactions as satisfactorily as the SWMM-GE model. The sustainable groundwater yield can be estimated for the regional water resources planning using the TANK_GS model

Parameters Analysis for Influence on the Local Scour around a Pipeline Exposed Waves and Currents (파와 흐름에 노출된 관로 주변부 국부세굴에 영향을 미치는 매개변수)

  • Kim, Kyoung-Ho;Oh, Hyoun-Sik;Kim, Heung-Guk;Son, Kwang-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.128-137
    • /
    • 2012
  • This paper deals with the local scour around a pipeline exposed to combined waves and current in the shallow water zone. To investigate the characteristics of the scour around a pipeline on the sea bed, experiments were performed according to the various pipe diameters, wave periods, wave heights, and current velocities. Wave generator and current generator were used for the experiments. Two current directions were used ; co-direction and counter direction to the waves. With the experimental results, the correlations between the scour depths and non-dimensional parameters such as Keulegan-Carpenter number(KC), Froude number(Fr), Ursell number(Ur) and velocity ratio were analysed. The relative scour depths were found obviously to be dominated by the wave component when the velocity ratio function approaches zero and those are gorverned by the current component when the velocity ratio approaches unity. Velocity ratio function was approved to be a proper parameter which is able to express the change of the scour in the combined wave and current zone. Also considering the orbital velocity and the current velocity into Fr numer and KC number respectively, scour depths show more favorable correlationship with the parameters.

Numerical Study on Flow and Heat Transfer Enhancement during Flow Boiling in Parallel Microchannels (병렬 미세관 흐름비등의 유동특성 및 열전달 향상에 대한 수치적 연구)

  • Jeon, Jin-Ho;Lee, Woo-Rim;Suh, Young-Ho;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.472-473
    • /
    • 2008
  • Flow boiling in parallel microchannels has received attention as an effective heat sink mechanism for power-densities encountered in microelectronic equipment. the bubble dynamics coupled with boiling heat transfer in microchannels is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulation is performed to further clarify the dynamics of flow boiling in microchannels. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle. The method is further extended to treat the no-slip and contact angle conditions on the immersed solid. Also, the reverse flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of channel shape and inlet area restriction on the bubble growth, reverse flow and heat transfer are quantified.

  • PDF

Analysis of Coherent Structure of Turbulent Flows in the Rectangular Open-Channel Using LES (LES를 이용한 직사각형 개수로 난류흐름의 조직구조 분석)

  • Ban, Chaewoong;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1435-1442
    • /
    • 2014
  • This study presented numerical simulations of smooth-bed flows in the rectangular open-channel using the source code by OpenFOAM. For the analysis of the turbulent flow, Large Eddy Simulations were carried out and the dynamic sub-grid scale model proposed by Germano et al. (1991) is used to model the residual stress term. In order to analyze the coherent structure, the uw quadrant method proposed by Lu and Willmarth (1973) is used and the contribution rate and the fraction time of the instantaneous Reynolds stress are obtained in the Reynolds stress. The results by the present study are analyzed and compared with data from previous laboratory studies and direct numerical simulations. It is found that the contribution rate of the ejection events is larger than that of sweep events over the buffer layer in the open-channel flow over the smooth bed, however, the frequency of the sweep event is higher than that of the ejection events.

Generation of neutral stream from helicon plasma and its application to Si dry etching (헬리콘 플라즈마로부터 중성입자 흐름의 생성 및 이를 이용한 실리콘의 건식식각)

  • 정석재;양호식;조성민
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.390-396
    • /
    • 1998
  • Neutral stream was generated from Helicon plasma source and was applied to etch silicon for the purpose of preventing physical and electrical damages from the bombardment of charged particles with high translation energy. By installing a permanent magnet and applying positive bias beneath the substrate, the cusp-magnetic and electric fiddles were generated in order to remove the charged particles from the downstream plasma. As a result, the electron density and ion density in the vicinity of the substrate were reduced by 1/1000 and 1/10, respectively. The directional etching of silicon was observed and the etch rate was found to be very low to below 100 $\AA$/min at a pressure of $8.5{\times}10^{-4}$ Torr, when $Cl_2$ and 10% $SF_{sigma}$ etchant gases were used.

  • PDF

Effect on Flow Boiling Heat Transfer of Minichannel Diameter for R-410A (R-410A 비등열전달에 미치는 미세관경의 영향)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek;Hrnjak, Pega;Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.663-670
    • /
    • 2009
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$ a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The test section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficients are compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficients correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube (수평미세관내 NH3 비등열전달 특성)

  • Choi, Kwang-Il;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • This paper is presented an experimental study of flow boiling heat transfer characteristics of ammonia, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal small tube with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method is applied for supplying heat to the refrigerant, where the test tube is uniformly heated by electric current. The local heat transfer coefficients were obtained over a heat flux range of 20 to $80kW/m^2$, a mass flux range of 50 to $500kg/m^2s$, a saturation temperature range of 0 to $10^{\circ}C$, and quality up to 1.0. The pressure drops increase with increasing mass flux and heat flux, and with decreasing saturation temperature. The heat transfer coefficients increase with increasing mass flux and saturation temperature in middle and high quality region. And the local heat transfer coefficient increase with increasing heat flux in low quality region. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. A new boiling heat transfer coefficient correlation based on the superposition model for ammonia in small tubes is developed average deviation of -0.17% and mean deviation of 10.85%.