• 제목/요약/키워드: 흄

검색결과 152건 처리시간 0.022초

증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구 (Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder)

  • 조승비;김영수
    • 한국건축시공학회지
    • /
    • 제22권6호
    • /
    • pp.663-672
    • /
    • 2022
  • 왕겨분말 혼입 지오폴리머의 황산마그네슘 저항성을 평가하기 위해, 비교대상으로 보통 콘크리트, 실리카 흄 혼입 콘크리트, 플라이애시와 고로슬래그를 혼입한 2성분계 지오폴리머를 비교대상으로 선정하여 황산마그네슘 용액침지시험을 실시하였다. 재령별 압축강도를 이용하여 산출한 황산염 열화지수는 황산마그네슘 용액 침지재령 56일에서 보통 콘크리트의 경우 6.75%이었으나, 왕겨분말 혼입 지오폴리머의 경우 모든 시편에서 1.28~1.87%의 낮은 수준을 보였다. 이는 실리카 흄 혼입 콘크리트의 2.48%보다 낮게 나타나 왕겨분말이 황산마그네슘 침식 저항성에 큰 도움이 되는 것으로 판단된다. 또한, 콘크리트 내부 미세균열과 외부열화에 대한 평가를 위해 시험체의 중량변화율의 경우 황산마그네슘 용액 침지재령28일 이후부터 모든 시험체에서 중량이 크게 변화하였으며, 침지재령 56일에서 보통 콘크리트는 3.78%로써 황산마그네슘에 의한 열화가 가장 심각한 수준임을 알 수 있었다. 그러나, 왕겨분말 혼입 지오폴리머의 경우 0.9~1.45%의 작은 중량변화율을 보였다. 지오폴리머 내의 에트린자이트 생성 정도를 X선 회절 분석법을 통하여 확인하였으며, 왕겨분말 혼입 지오폴리머에서는 소량으로 생성되어 있는 것을 확인할 수 있어, 황산마그네슘 침식 저항성에 높은 상관성이 있음을 알 수 있었다.

플럭스 코어드 아크 용접 공정에서의 흄 형성량에 관한 연구 (A Study on Fume Formation Ratio on Flux Cored Arc Welding Process)

  • 윤충식;백남원
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.108-112
    • /
    • 1999
  • A study was conducted for the effects of input energy on fume formation ratios based on electrode(FFR$_{electrode}(g/kg_{electrode})),\;deposited\;metal(FFR_{weld}(g/kg_{weld}))\;and\;slag(FFR_{slag}(g/kg_{slag}))\;at\;CO_2$ flux cored arc welding on stainless steel. Experiments were run in well designed welding fume box. Six types of flux cored wires were used and three levels of current and voltages were given. The measured values of $FFR_{electrode},\;FFR_{weld},\;FFR_{slag}\;are\;7.90{\pm}1.47\;g/kg_{electrode},\;9.18{\pm}1.65\;g/kg_{\electrode},\;71.8{\pm}24.2\;g/kg_{slag}$ respectively. Fume formation ratios are not increased dramatically by input energy because of simultaneous increasing of melted electrodes, deposited metal and slag. The results indicate that the test of fume formation ratios in the research on production of low fume welding wire can be run at the fixed condition of input energy rather than various condition.

  • PDF

설비배관에서 용접봉에 따른 환경오염 (Environments Pollution Caused by Welding Rod in the Process of Pipe Working)

  • 윤영묵;이우람;이철구;김주한
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.300-306
    • /
    • 2009
  • Welding technology is applicable in many kinds of fields, with the help of its advantages such as easy operational procedure and structural simplification. However, in the process of welding, hazardous materials and fumes cause huge fire broke-outs, explosions, and health-conscious problems. Also, as heavy metals in fumes have a harmful effect on the environment, recently, this has emerged as a urgent social issue. This study has been aimed at the recommendation of the most environment-friendly, among materials currently used in plumbing welding, and it has been done at the result of the analysis of amount, ingredient, and size in collected fumes created in the experiment of welding five rods to galvanized steel pipes and steel pipe ones. At the test result, due to the effect of Zn-coating, galvanized steel pipes, when welded to rods, created more fumes than steel pipe ones. In the mean time, when it comes to welding rods, among five, WR-03 produced fumes the least. Therefore, a combination of the test results clearly indicates that the case of welding WR-03 to cast-iron pipes turned out to be the most environment-friendly.

  • PDF

모 조선업 작업장의 공기중 용접흄농도에 관한 조사 (A Study on the Concentration of Welding Fume in a Shipbuilding Factory)

  • 김광종;송기창
    • 한국산업보건학회지
    • /
    • 제1권1호
    • /
    • pp.68-72
    • /
    • 1991
  • The present investigation studied the welding fumes produced during the arc welding process at a shipyard. The air at the shipyard was sampled (between February and May, 1990) to determine the total welding fume concentration, its heavy metal content and the concentrations of different sized particles of the welding fumes. The results were as follows : 1. Forty-four out of 50 samples showed welding fume concentrations which exceeding the threshold limit value of $5mg/m^3$. The geometric mean of welding fume concentration was $9.73mg/m^3$ ($2.14-24.86mg/m^3$), and the nighest level was found at the dock assembly shop ($12.0mg/m^3$). 2. The welding fume concentration measured with personal air sampler was 4.2 times greater than that measured with area sampler. 3. Of the heavy metals analyzed, Fe was found to be the most concentrated at $1.29mg/m^3$ ; it constitued 13.3% of the total welding fume concentration. 4. Of the different sized particles that make up the welding fumes, there was a tendency for the smaller particles to be more concentrated. Particles that measured $7{\mu}$ or less in diameter constituted 85.8% of the total welding fume concentration.

  • PDF

가연성 배기덕트-흄 화재위험성 평가에 관한 연구 (A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume)

  • 윤여송;이영순
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

충청지역 일부 공업고등학교 실습생의 용접흄 및 망간에 대한 노출 평가 (Exposure Evaluation to Total Welding Fume and Manganese at Technical High Schools in Choong-Nam Area)

  • 이종화;장지선;박종안;장보기
    • 한국환경보건학회지
    • /
    • 제27권4호
    • /
    • pp.51-62
    • /
    • 2001
  • Geometric mean of airborne welding fume concentration at technical high schools was 4.80mg/㎥)N.D~35.39 mg/ ㎥ and the percentage of samples exceeded TLV of the Korean ministry of labor was 43.6%, Geometric mean of airborne Mn concentration was 0.06 mg/㎥(N.D~0.42mg/㎥) and the percentage of samples exceeded TLV of ACGIH was 15.4 % In case of airborne Me concentration, there is a significant difference among schools (p<0.05) Mn concentrations in blood of the exposed and control groups were 1.84$\mu\textrm{g}$/dl and 1.91 mg/dl respectively. Mn concentrations in urine of the exposed and control groups were 1.36$\mu\textrm{g}$/ιand 0.57$\mu\textrm{g}$/ι respectively. In case of Mn concentrations in urine there is a significant difference between both groups(P<0.001) and among schools(p<0.05) Mn concentrations in blood and urine of exposed group were not over BEIs of the Korean ministry of labor. Mn levels in blood and urine were not significantly affected by smoking, drinking and residence, There was no correlation between Mn concentration in air and blood but there was a statistically significant correlation between Mn concentration in air urine(r=0.323). There was no a statistically significant correlation between Mn concentration in blood and urine.

  • PDF

압축공기를 이용한 용접흄 제어용 용접면(JASM)의 개발 (Development of a jet air supplying welding mask for controlling welding fumes)

  • 송세욱;김종길;하현철;김태형;김종철;정유진
    • 한국산업보건학회지
    • /
    • 제10권2호
    • /
    • pp.98-108
    • /
    • 2000
  • Controlling the over-exposure of welding fumes is not an easy problem because neither general nor local exhaust ventilation systems could be successfully applied. A jet air supplying welding mask was development to reduce the exposure level of welding fumes. The jet airs tream pushes the welding fumes away from the breathing zone by using the frictional characteristic of jet. Laboratory experiments were conducted to optimize the efficiency of controlling welding fumes. Thereafter, its performance was tested in a laboratory and an industrial field. The efficiencies of reducing the welding fume exposure were about 90% and 80% in a laboratory and an industrial field, respectively. Additionally, it resulted in elimination of heat inside the mask and enhancement of clear visuality.

  • PDF

고강도 경량골재콘크리트의 동결융해 저항성에 대한 실험적 연구 (An Experimental Study on the Freeze-Thaw Resistance of High-Strength Light Weight Aggregate Concrete)

  • 한상묵;최세규;김생빈
    • 콘크리트학회지
    • /
    • 제10권1호
    • /
    • pp.125-132
    • /
    • 1998
  • 경량골재 콘크리트의 내구성과 경제성에 대한 인식 부족으로 조경재료나 인공토양 둥 구조부재 이외의 분야에 사용되고 있는 국내 실정에 비해서, 구미 여러나라에서는 고강도 경량골재를 장지간 교량과 고충건물에 사용하고 있다. 경량골재 콘크리트는 구조물의 재료비 단순비교에 있어서도 경제성이 있을 뿐만 아니라, 자중감소로 인한 구조적, 기하학적 장점도 있으며, 또한 고강도 경량골재의 개발로 경량골재가 가지고 있는 여러 문제점을 해소하여 사용성과 내구성에 있어서 보통골재 콘크리트와 큰 차이가 없는 상황이다. 그러나국내에서 생산된 경량골재는 닫힌 공극보다 열린 공극을 많이 내포하고 있어 수분흡수가 많고, 특히, 동결융해에 대한 내구성에 취약한 문제점을 가지고 있다. 본 논문에서는 내동해성 향상을 위해 10종류의 고강도 경량골재 콘크리트 공시체를 제작하여 실리카 흄, 물.시멘트비, AE제, 강섬유 등을 실험 변수로 하여동결융해 실험을 수행하였다. 연구결과 실리카흄, 물.시멘트 비는 어느 정도 내동해성을 향상시키지만 근본적인 해결방안이 되지 못하며, AE제를 첨가한 공시체와 강섬유를 사용한 공시체는 동결융해 내구성 지수가 90%이상으로 측정되어 내동해성을 개선시킬 수 있는 요소로 나타났다.

용접작업 형태별 공기중 용접흄 농도와 금속 성분에 관한 조사연구 (Airborne Concentrations of Welding Fume and Metal Components by Type of Welding)

  • 이권섭;백남원
    • 한국산업보건학회지
    • /
    • 제4권1호
    • /
    • pp.71-80
    • /
    • 1994
  • This study was conducted to evaluate worker exposure to welding fume in automobile body shop and to evaluate metal components by type of welding. The results are summarized as follows: 1. Average concentrations of total welding fume without and with ventilation were $5.2mg/m^3$ and $2.49mg/m^3$, respectively. Thus, the average reduction rate of total fume by ventilation was 52.1 %. 2. The highest fume concentration was indicated at shielded arc welding, followed by $CO_2$ gas welding, argon arc welding, and spot welding in order of decreasing concentration. 3. Average respirable fume concentrations without and with ventilation were $2.97mg/m^3$ and $1.64mg/m^3$, respectively. 4. Further analysis of welding fume indicated that total fume consisted of $Fe_2O_3$, ZnO, Mn, Pb, and CuO, in order of decreasing amount. Combined effect of metals was below the American Conference of Governmental Industrial Hygienists (ACGIH)Threshold Limit Values (TLVs).

  • PDF

Sprague-Dawley 랫드에서 60일간 용접흄 폭로에 의한 폐기능 변화 (Changes of Pulmonary Function!) During 60 days of Welding Fume Exposure Period 1m Sprague-Dawley Rats)

  • 성재혁;최병길;맹승희;김수진;정용현;한정희;현진숙;송경석;조영봉
    • Toxicological Research
    • /
    • 제20권1호
    • /
    • pp.55-61
    • /
    • 2004
  • Respiratory effects in full time welders include bronchitis, airway irritation, lung function changes, and lung fibrosis. Welder's pneumoconiosis has been generally determined to be benign and not associated with respiratory symptoms based on the absence of pulmonary function abnormalities in welders with marked radiographic abnormalities. Accordingly, to investigate pulmonary function changes during 60 days induced by welding-fume exposure, male Sprague-Dawley rats were exposed to manual metal arc-stainless steel (MMA-SS) welding fumes with concentrations of 64.8$\pm$0.9 mg/$m^3$ (low dose) and 107.8 $\pm$ 2.6 mg/$m^3$ (high dose) total suspended particulates for 2 hr/day, 5 days/week in an inhalation chamber for 60 days. Pulmonary function was measured every week with whole body plethysmograph compensated (WBP Comp, SFT38116, Buxco Electronics, Sharon, CT). The rats exposed to the high dose of welding fumes exhibited statistically significant (p<0.05~0.01) body weight decrease as compared to the control whereas cell number increase of the bronchoalveolar lavage fluid (BALF) (total cell, macrophage, polymorphonuclear cell and lymphocyte) during the 60 days exposure period. And only tidal volume was significantly decreased in dosedependantly during 60 days of MMA-SS welding fume exposure. This pulmonary function change with inflammatory cell recruitment confirms the lung injury caused by the MMA-SS welding fume exposure.