• Title/Summary/Keyword: 흄

Search Result 152, Processing Time 0.026 seconds

A Comparison Study on the Concentration of Total Welding Fume and Respirable Particulate Mass for Welding Workers of a Shipbuilding (조선소 용접작업자들의 총용접흄과 호흡성분진농도 비교연구)

  • Kang, Yong-Seon;Sim, Sang-Hyo;Lee, Song-Kwon;Bin, Sung-Oh;Choi, Eun-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.276-282
    • /
    • 2007
  • The purpose of this study is to assess the accurate state of the following: total welding fumes versus welding fumes in the air, respirable particulate mass, and exposure of dockyard welders to heavy metals. In addition, this study provides basic data for proposing improvements to create efficient and appropriate welding environments and to prevent occupational diseases. The subjects of this study were 94 laborers who worked at the block construction sites of large-scale dockyards located in Gyeongnam Province from March 2005 to June 2005. In order to collect samples on total welding fumes in the air and respirable particulate mass from the welders, Methods 0500 and 0600, established by the National Institute for Occupational Safety and Health (NIOSH), were used. The metals within the welding fumes were also analyzed using Inductively Coupled Plasma (ICP) under Method 7300 from NIOSH. The results of this research are summarized below. The geometric mean concentration of total welding fumes and that of respirable particulate mass were $4.11\;mg/m^3\;and\;3.53\;mg/m^3$, respectively. As a result of comparing the two measurement methods, there were significant differences (p<0.05) between the two groups for Ca, Cu, Cr, and Ni; however, there were no differences in Fe, Mg, Zn, Mg, Pb, and Cd. As a result of the analysis, the correlation between Mn and the concentration of heavy metals in the total welding fumes and respirable particulate mass was found to be -0.29, a significant negative correlation. The correlation between other heavy metals, however, was low. Finally, in the same total welding fumes, the correlation of Fe and Mg was high.

Plastic Shrinkage Cracking Reduction of Press Concrete Using Admixtures in Basement (주차장바닥에서 혼화재료들을 사용한 누름콘크리트의 소성수축 균열저감)

  • Kim, Young-Su;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.416-424
    • /
    • 2019
  • In Korea, press concrete in basements is mainly applied using plain concrete. This system has undesirable defects such as cracks caused by plastic shrinkage and irregular temperature distribution. To solve this problem, metal lath and fibers have been used in the past. However, they have not been effective in controlling cracks. This study analyzed the reduction of plastic shrinkage cracking for press concrete using various admixtures in a basement has been. In the air contents test, the specimens with various admixtures showed air contents similar to plain concrete (4.5±1.5%). The specimens using silica fume, super plasticizer agent, and SBR showed higher compressive strength by about 10-15% than plain concrete. Cracking decreased when the MC, super plasticizer, and SBR were added. When MC was used in the concrete, the plastic shrinkage did not occur.

Status of Welding Fume Concentration and Local exhaust Ventilation System at Welding Laboratory in Technical High School (공업고등학교 용접실습실의 용접흄 발생농도와 국소배기 실태)

  • Hwang, Sung-Hwan;Son, Bu-Soon;Jang, Bong-Ki;Park, Jong-An;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was performed to evaluate a local exhaust ventilation system capability and welding fume concentration in welding laboratory at 5 technical high schools. Results of the study are as follows; 1. The personal exposure of welding fume in welding laboratory was measured. The geometric mean of 73 personal samples was $6.27mg/m^3$($3.85{\sim}9.88mg/m^3$), and 68.5% of these exceeded TLV of the Korea Ministry of Labor. 2. The geometric mean of welding fume at outside of booth was $2.27mg/m^3$($1.57{\sim}2.58mg/m^3$). All of measured concentrations were lower than TLV of the Korea Ministry of Labor. 3. Local exhaust ventilation system in welding laboratory could not remove hazardous substance effectively because of inappropriate canopy hood and absurd design. 4. The possibility of exposure risk was estimated to be high because of working point under breathing zone, misplacement of working table and insufficient supply of respiratory protector. 5. The mean values of capture velocity and transportation velocity of local exhaust ventilation system in welding laboratory were 0.38m/sec, 4.27m/sec respectively. These values were satisfied the guideline of the Korea Ministry of Labor. 6. The efficiency of performance of local ventilation system was anticipated to be decreased because of accumulated dust and alien substance on fan and duct.

  • PDF

A Study on Filtration Efficiency of Several Dust Masks for Stainless Steel arc Welding fume (방진마스크의 Stainless steel arc 용접흄 여과효율에 관한 연구)

  • Song, Kyung-Seuk;Kwon, Yong-Shick;Han, Kuy-Tae;Chung, Kyu-Hyuck;Lee, Yong-Mook;Yu, Il-Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2001
  • The purpose of this study was to investigate for filtration efficiency of several dust masks, comparing with filtration efficiency certified by KOSHA(Korea Occupational Safety & Health Agency), and to require of the right use of protective respirators. Using a welding fume generator and chamber, several dust masks, which were widely used in the workplaces in korea, were tested for their filtering efficiency for stainless steel arc welding fume. The filtration efficiency testing system consisted of a welding fume generator, a chamber and a filtration unit. The filtration unit was made of a mask which was inserted into the sampling cassette and another sampling cassette, which contained mixed cellulose ester filter paper. These two cassettes were connected with tubing. Stainless steel arc welding fume generator was delivered into an chamber. The welding fume in the chamber was passed into the filtration unit with flow rate of 30 liter/min. The welding fume filtration efficiency was evaluated by gravimetric measurement. Metal concentrations in the welding fume before and after filtration were measured with inductive coupling plasma analyzer. Following results were obtained: Filtration efficiency of welding fume for common hygienic mask was 63.82% and the average efficiencies for A, B, C, D, E, F and G masks were 94.62%, 96.58%, 83.20%, 82.76%, 77.25%, 86.55% and 93.22%, respectively. Our results indicate that dust masks used widely in the welding workplaces in korea are not proper for protecting worker's health and then the use of fume mask should be required.

  • PDF

A Study on the Status of Management for Personal Protective Equipments & Fume Hoods in University Research Laboratories (일부 대학 내 연구실험실의 보호구 및 흄후드 관리 실태에 관한 연구)

  • Park, In-Kyu;Lee, Sa-Woo;Jung, Jong-Hyeon;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.229-237
    • /
    • 2014
  • Objectives: This study intends to determine the current status of management of personal protective equipment fume hoods in university laboratories. Methods: A walk-through survey of 402 labs in Gyeongbuk Province and Daegu Metropolitan City were carried out between May 2009 and July 2010. Respectively, 348 and 54 laboratories were examined in Gyeongbuk Province and Daegu. Results: In size, labs serving over 15,000 student made up the majority with 276(66.4%). In terms of major, engineering labs were the highest in number with 100(24.9%). As to personal protective equipment, a gas mask and a dust mask were available in 17.8% and 14.3% of the labs, respectively, but 68.9% of labs were equipped with protective goggles. Meanwhile, only 12.7% of labs had separate protective equipment storage boxes. About 60% of the labs had installed a fume hood, of which the average capture velocity was 0.37 m/sec. Conclusions: For toxic substances, the labs are obliged to provide personal protective equipment in in accordance with the Occupational Safety and Health Act. In addition, the capture velocity of fume hoods must be in strict compliance in order to prevent occupational diseases due to toxic chemicals.

Applications of Artificial Neural Networks for Using High Performance Concrete (고성능 콘크리트의 활용을 위한 신경망의 적용)

  • Yang, Seung-Il;Yoon, Young-Soo;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.119-129
    • /
    • 2003
  • Concrete and steel are essential structural materials in the construction. But, concrete, different from steel, consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructors. Concrete have two kinds of properties, immediately knowing properties such as slump, air contents and time dependent one like strength. Therefore, concrete mixes depend on experiences of experts. However, at point of time using High Performance Concrete, new method is wanted because of more ingredients like mineral and chemical admixtures and lack of data. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network ate used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength, slump, and air contents are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

Effect of Metal Ions on the Sedimentation of Humic Acid (흄산의 침적에 미치는 금속이온의 영향)

  • Park, Yeong Jae;Park, Kyoung Kyun;Chun, Kwan Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.50-58
    • /
    • 1996
  • In the presence of metal ions(Co(Ⅱ), Ni(Ⅱ), Sr(Ⅱ), Cu(Ⅱ), Fe(Ⅲ), U(Ⅵ)), the sedimentation of humic acid was increased at constant pH with increasing metal concentration and the strength was increased in the following order: Sr < Ni < Co < Cu < Fe < U. At constant metal concentration, Cu(Ⅱ), Ni(Ⅱ), and Co(Ⅱ) ions caused an increase in sedimentation of humic acid as the solution pH increased, whereas Fe(Ⅲ) and U(Ⅵ) ions caused a decrease. Sr(Ⅱ) ions did not affect the sedimentation even with the variation of pH. The analysis of FT-IR spectra for the sediments prepared from the reaction between humic acid and metal ions showed that metal ions were bound to humic acid to form complexes, suggesting that the metal complexation plays an important role in the sedimentation of humic acid.

  • PDF

Compressive and Tensile Strength Properties of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 보강 콘크리트의 압축 및 인장강도 특성)

  • Kim, Suk-Ki;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.703-708
    • /
    • 2006
  • The slurry infiltrated fiber concrete(SIFCON) is recognized as one of the most promising new construction materials. Compressive and direct tensile tests are performed to investigate the mechanical property of SIFCON. Hooked-end steel fibers are used in the mix with fiber volume fraction varied from 4% to 10%. The water/cement ratio is kept constant at 0.4. The amount of silica fume added is 10% by weight of cement and 0.5% of water reducing agent is added to improve the workability of the slurry. The test results in this study show that the compressive strength of SIFCON is about 1.59 to 2.68 times in comparison with the cement paste. Tensile strength is showed the enhancement of about 2.51 to 8.77 times. It is also observed that the toughness and ductility of SIFCON are increased significantly with the increasing in fiber volume fraction.

Exposure Evaluation to Total Welding Fume and Manganese at Technical High Schools in Choong-Nam Area (충청지역 일부 공업고등학교 실습생의 용접흄 및 망간에 대한 노출 평가)

  • 이종화;박종안;장봉기
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.37-39
    • /
    • 2002
  • Geometric mean of airborne welding fume concentration at technical high schools was 4.80mg/㎥(N.D∼35.39mg/㎥) and the percentage of samples exceeded TLV of the Korean ministry of labor was 43.6%, Geometric mean of airborne Mn concentration was 0.06mg/㎥(N.D∼0.42mg/㎥) and the percentage of samples exceeded TLV of ACGIH was 15.4%. In case of airborne Mn concentration, there is a significant difference among schools (P<0.05). Mn concentrations in blood of the exposed and control groups were 1.84$\mu\textrm{g}$/㎗ and 1.91$\mu\textrm{g}$/㎗, respectively. Mn concentrations in urine of the exposed and control groups were 1.36$\mu\textrm{g}$/$\ell$ and 0.57$\mu\textrm{g}$/$\ell$, respectively. In case of Mn concentrations in urine, there is a significant difference between both groups(P<0.001) and among schools(P<0.05). Mn concentrations in blood and urine of exposed group were not over BEIs of the Korean ministry of labor. Mn levels in blood and urine were not significantly affected by smoking, drinking and residence. There was no correlation between Mn concentration in air and blood, but there was a statistically significant correlation between Mn concentration in air and urine(r=0.323). There was no a Statistically significant correlation between Mn concentration in blood and urine.

  • PDF

A Study on Indirect Prediction of Welding Fume Concentrations Using Computational Fluid Dynamics (전산유체역학을 이용한 용접흄농도 간접적 예측가능성 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Seo, Jeoung Yoon;He, Rong Bin;Lim, Jung Ho;Kang, Dae Woong;Ha, Hyun Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.328-334
    • /
    • 2009
  • There are various methods for welding fume control. These methods can be divided into local exhaust system, general ventilation system and integrated control system. With the general ventilation system, we should have a good prediction tool for testing various appropriate control options. But, until now there are not many studies about how to predict the welding fume concentrations. Especially, the prediction of welding fume concentration is not a very easy task because welding fume is the particulate matters. In this study, we tried to measure $CO_2$ concentrations and welding fume concentrations in a small single room with a small ventilation opening. Using commercially available CFD (Computational Fluid Dynamics) software, we tried to predict $CO_2$ concentrations under the exactly same conditions. Then, we tried to compare the numerical $CO_2concentrations$ with the experimental results to know whether we could predict $CO_2$ concentrations. Then we tried to compare $CO_2$ concentrations with experimental welding fume concentrations to know whether we can use the numerical $CO_2concentrations$ to predict the welding fume concentration indirectly.