• Title/Summary/Keyword: 휴폐광산

Search Result 12, Processing Time 0.018 seconds

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF

Risk Assessment of As, Cd, Cu and Pb in Different Rice Varieties Grown on the Contaminated Paddy Soil (중금속 오염 논토양에서 재배된 벼 품종간 위해성평가 비교)

  • Kim, Won-Il;Kim, Jin-Kyoung;Yoo, Ji-Hyock;Paik, Min-Kyoung;Park, Sang-Won;Kwon, Oh-Kyung;Hong, Moo-Ki;Yang, Jay-E;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Heavy metal pollution may be one of the most serious challenges confront crop production and human health. Therefore, the selection of heavy metal tolerance cultivars which adapted to the contaminated fields will introduced a suitable solution for management this critical environmental risk. The objectives of this research is to assess human health risk using geochemical analyses and exposure assessment of heavy metals in rice cultivars. Risk for inhabitants in the closed mine area was comparatively assessed for As, Cd, Cu and Pb in 10 rice varieties as a major exposure pathway. The average daily dose (ADD) of each heavy metal was estimated by analyzing the exposure pathways to rice and soil. For the non-carcinogenic risk characterization, Hazard Quotient (HQ) and Hazard Index (HI) were calculated using toxicity indices provided by US-EPA IRIS. The different rice varieties revealed a wide range of HI values from 23.6 to 34.3, indicating that all rice varieties have a high potential toxic risk. The DA rice variety showed the lowest HI value while the TB rice variety the highest. The probabilities of cancer risk for As via rice consumption were varied with rice varieties ranging from 2.0E-03 to 3.5E-03 which exceeded the regulatory acceptable risk of 1 in 10,000 set by US-EPA. The DA rice variety also showed the lowest value while the TB rice variety gave the highest value. Our results indicate that risk assessment can be contribute to screen the pollution safe rice cultivars in paddy fields affected by the mining activity.