• Title/Summary/Keyword: 휨-전단거동

Search Result 354, Processing Time 0.024 seconds

Flexural Behavior of Steel Composite Beam with Built-up Cross-section by Bolt Connection (볼트로 체결된 강재 조립 합성보의 휨 거동)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Ji, Tea-Sug;Jung, Kyoung-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The flexural behavior of steel composite beam with built-up cross-section by bolt connection is presented in this paper. The composite effect due to bolt-connetion and friction between steel plate are considered to investigate the flexural behavior of steel composite beam. The displacement, bending stresses and shear stresses according to composite rate are calculated by F.E. analysis and these results are compared to the analytical values of non interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel plate. When the composite rate reaches $50{\sim}60%$, the behavior of composite beam is similar to that of fully composite beam.

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

A Study on the Reinforcement of Steel Composite Beam Using the External Post-Tensioning Method (외부 후 긴장 공법을 이용한 강합성보의 보강에 관한 연구)

  • Park, Yong-Gul;Park, Young-Hoon;Lee, Seung-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.549-558
    • /
    • 2000
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridges as well as architecture structure. In this study, to investigate the behavior of composite beam in the process of post-tensioning, the amount of prestress force loss, the amount of prestressed compression stress at the lower flange and the behavior of lower flange connected with anchorage are analyzed by comparing the results of finite element analysis with the measured results of installed strain gauges. After finishing the post-tensioning, the strengthening effect of external post-tensioning method is analyzed by static loading test. It is also investigated that the strengthening effect of shear section in the harped external post-tensioning specimens.

  • PDF

Flexural Capacity of the Composite Beam using Angle as a Shear Connector (앵글을 전단연결재로 사용하는 합성보의 휨성능)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Choi, Jong Gwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.63-75
    • /
    • 2015
  • In this study, Composite beam flexural capacity was investigated experimentally using angle as a shear connector. The main experimental parameters are the size and the spacing of the angle and the overall behavior of before and after composite. Also, the composite beam bending performance when it used with hollow PC slab and the general RC slab was compared. When determining that it synthetically, the flexural capacity of the composite beam with angle shear connector estimated 25% to 55% more strength than the nominal strength. Effects of strength parameters of composite beam by angles shear connector are size and spacing of the angle. As expected, the larger and the narrower spacing of the angles, the more strength the composite beam have. In addition, the performance of the composite beam with a hollow slab was well demonstrated by the test.

Ultimate Shear Strength of Tapered Steel Plate Girders (높이가 변하는 플레이트거더의 극한전단강도)

  • Lee, Doo Sung;Park, Chan Sik;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.391-399
    • /
    • 2006
  • Plate girders with variable depths have been often used at piers considering not only the economy but also an aesthetic aspect. Tapered plate girders exhibit more complicated behaviors than prismatic girders especially under shear. However, a comprehensive design method for the determination of the shear strength has yet to be developed mainly due to lack of study. In this study, investigated is the buckling and ultimate behaviors of tapered plate girders subjected to shear through finite element analyses. From the analysis results, a simple design formula is suggested for the evaluation of the shear strength of tapered plate girders.

Shear Damage Behavior of Reinforced Concrete Beams under Fatigue Loads (반복하중을 받는 철근콘크리트보의 전단피로손상거동)

  • 오병환;한승환;이형준;김지상;신호상
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.143-151
    • /
    • 1998
  • 최근들어 반복하중에 의한 철근콘크리트 구조물의 손상이 자주 발견되고 있으며 교량 등의 구조물 등은 때때로 과적차량에 의한 초과하중을 받아 이러한 피로손상이 심화되고 있다. 본 연구에서는 이러한 반복 하중을 받는 철근 콘크리트보의 누적피로손상에 대한 실험적 연구룰 수행하여 피로하중에 의한 철근콘크리트보의 손상과정을 규명하였다. 실험 변수를 전단철근의 양과 반복되는 하중의 크기 및 반복횟수로 하여 실험부재를 제작하였으며, 하중제어에 의한 휨시험법에 의해 3Hz의 반복하중을 시편에 재하하였다. 사인장 균열하중과 사인장 균열 후 반복하중에서의 보의 손상누적거동 즉 처짐. 전단철근의 변형도, 에너지 손실 등의 변화를 실험적으로 평가하였으며, 이를 통하여 반복하중에 의한 누적손상에 의해 철근 콘크리트보의처짐 및 전단변형도가 초기하중상태에서는 급격히 증가하다가 이후 점진적으로 증가하는 것을 규명하였다. 본 연구의 결과는 사용하중상태에서 점진적으로 발생할 수 있는 피로손상의 누적과정을 기술하여 주고 있다.

A Study on the Dynamic Behavior of Vertical Shaft in Multi-Layered Soil (다층지반에서의 수직구 동적 거동 분석)

  • Kim, Yong Min;Jeong, Sang Seom;Kim, Kyoung Yul;Lee, Yong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, dynamic response of a vertical shaft subjected to seismic loads was evaluated by three-dimensional Finite Element (FE) approach. The emphasis was on quantifying the ground conditions, input motions and direction of motions. A series of parametric analyses were carried out. From the results of FE analysis, more than 1.7 times increase in shear force and bending moment is obtained when the stiff layer was thinker than the soft layer. And all of the maximum values were occurred near the interface between the soil layers. The dynamic behavior of vertical shaft was significantly influenced by the different frequencies of the input motion, and normalized acceleration of surrounding soil was 3 times larger than vertical shaft.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Numerical Analysis of the Nail Behavior Considering Resisting Bending Moment (휨 저항을 고려한 네일 거동에 대한 수치해석적 분석)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.85-96
    • /
    • 2007
  • The application of soil nailing method has increased because it provides easier construction, economic efficiency, and stability than existing support methods. The mechanical comprehension of the soil-nailing system has not been established and the resisting shear force and bending moment of the soil-nail have been disregarded for the design of soil-nailing system. The soil nail consists of cement associated with rebar and resists shear force and bending moment mobilized by applied loading or soil-self weight. In this study, the slope analysis in the consideration of the resisting shear force and bending moment of the nail has been performed using $FLAC^{2D}$, which is programed by the finite difference method.

Arch Action in Reinforced Concrete Beams (철근콘크리트보에서의 아취현상에 대한 연구)

  • Kim, Woo;Kim, Dae-Joong;Mo, Gui-Suk;Ko, Kwang-Il
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 1994
  • Sixteen reinforced concrete beams were tested statically up to failure to investigate the arch action. Major variables were the shear span to depth ratio, steel ratio and existence of stirrups.The arch action in reinforced concrete beams started when flexural cracks appeared at the center of the span. Due to the reduction of internal moment arm length by the development of arch action, the measured steel tension was significantly higher than the calculated. As the shear span to depth ratio arid steel ratio decrease, the arch action in reinforced concrete eams increases. Over the entire length the force in the steel of no web reinforced beams having smaller a /d ratio than 3 was constant because the beams acted as a tied arch.