• Title/Summary/Keyword: 휨-전단강도

Search Result 347, Processing Time 0.023 seconds

Shear Strength Model for HPFRCC Beams with Main Longitudinal Tensile Reinforcements (주인장 철근을 가진 HPFRCC 보 부재 전단 강도 예측 모델)

  • Lee, Seong-Cheol;Shin, Kyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, many studies have been conducted on the structural behavior of HPFRCC, but most of the studies focused on the flexural behavior while studies on the shear behavior are limited. In this study, a model has been developed to reasonably predict the shear strength of a HPFRCC beam without stirrups. To develop the model, a HPFRCC beam was simply idealized with upper & lower chords resisting bending moment and a web shear element resisting shear forces. Then, taking into the account of the tensile behavior of HPFRCC, the main diagonal compressive strut angle and shear stress of the web shear element were evaluated on shear failure. Then, the shear strength of the HPFRCC beam could be evaluated. For the verification of the proposed model, the predictions by the proposed model were compared with the test results of 48 HPFRCC beams exhibiting shear failure. The results showed that the proposed model reasonably predicted the actual shear strength with an average of 1.045 and CoV of 0.125. This study are expected to be useful for related researches and design of members or structures to which HPFRCC is applied.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

A Study of the Shear Design Codes of FRP RC Beam without Shear Reinforcements (전단보강이 없는 FRP RC 보의 전단설계기준에 대한 고찰)

  • Shin, Sung-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.481-482
    • /
    • 2010
  • There is disagreement among researchers in many areas of FRP RC design code except flexural. So a new efficient and reliable shear strength equation which show a high accuracy and a consistent variation in predicting failure modes and shear strength was proposed.

  • PDF

Study on Bending and Shear Strength Setting of Full-scale Model Additional Walls for Additional Wall Test Bed Combined with PHC-W Pile Retaining Wall (PHC-W말뚝 흙막이와 결합된 지하증설벽체 테스트베드 구축을 위한 실대형 지하증설벽체의 휨강도 및 전단강도 설정 연구)

  • Woo, Jong Youl;Yoo, Choong Geon;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.7-17
    • /
    • 2018
  • Test bed additional wall combined with PHC-W pile retaining wall has been constructed. To determine the dimensions of test bed additional wall, bending and shear tests of full scale core members of additional wall were tested. Basement additional walls utilizing PHC-W pile retaining wall, which were developed by modifying the cross-section of PHC piles, were classified into the composite additional wall and the non-composite additional wall. Their tests were conducted to obtain bending strength and shear strength of basement additional walls ultilizing PHC-W pile retaining wall. Since bending strengths and shear strengths of the composite additional wall and the non-composite additional wall were similar, it could be confirmed that the non-composite additional wall could be applied instead of the composite additional wall. Full-scale model additional wall was 200 mm thick, thus the thickness of additional wall combined with PHC-W pile retaining wall could be reduced by 100~200 mm.

Shear Strength and Hysteretic Behavior of SRC Column to Steel Beam Joints (SRC 기둥-H 형강보 접합부의 전단강도 및 이력거동)

  • Lee, Seung Joon;Kim, Won Ki;Seo, Dong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.277-285
    • /
    • 1997
  • To investigate the shear strength and hysteretic behavior of SRC column to H steel beam joints, seven cruciform specimens were fabricated and tested. The test specimens showed stable hysteresis behavior with a little pinching. The strength decreased with increase in deflection after the speciemens reached at the maximum strength. The shear strength of panel zones increased with increased in the concrete amount of SRC column sections. The shear strength may conservatively be estimated by the sum of shear yielding strength of steel column web, plastic bending strength of steel column flange and ultimate shear strength of concrete in the panel zone.

  • PDF

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

A Prediction of Shear Strength Using Arch Models in Reinforced Concrete Beams without Web Reinforcement (아치모델을 이용한 복부보강이 안된 철근 콘크리트 보의 전단강도 산정)

  • 김대중
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.233-240
    • /
    • 1998
  • A rational expression, developed to predict the shear strength of reinforced concrete beams, is derived from the relationship between shear and the rate of change of bending moment along a beam coupled with experimental findings for the arch action. The proposed ultimate shear strength equation, arising from analytical premises and then calibrated with experimental data, is a similar form to the ACI 318 equation derived mainly from empirical approach. The proposed equation depends on the concrete compressive strength, amount of longitudinal steel content, and the shear span-to-depth ratio, and rationally reflects the shear resistance mechanism of combined beam action and arch action in reinforced concrete beams. The proposed equation applied to existing test data and the results were compared with those predicted by the ACI 318 equation and the Zsutty's equation.

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Structural Performance and Fire Resistance Capacity of Inorganic Polymer Composites for Carbon Sheets Exposed to High Temperature (탄소섬유쉬트 보강 콘크리트용 무기계 폴리머 접착제의 내화 및 구조성능)

  • Chung, Lan;Park, Hyun-Soo
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.109-115
    • /
    • 1998
  • 철근콘크리트 구조물이 과소설계되어 있거나 과다 하중이 작용하게 되면 그 구조물의 구조성능을 파악하여 보수.보강을 시행하게 된다. 최근에 가장 맣이 사용되는 보수.보강 재료로는 특히 휨내력을 보강하는데 탄소섬유를 들 수 있다. 탄소섬유쉬트는 내열성과 내호염성에 있어서 회재가 발생할 경우 보강재료로서 충분한 성능을 가지고 있다. 그러나 이를 접착시키는데 사용되는 에폭시는 유기계 물질로서 화재시 유독가스가 발생하고 내열성능도 30$0^{\circ}C$정도에도 지탱하기 어려워 화재 발생이 가능한 구조물에 사용하기 어렵다. 이 연구에서는 무기계 폴리머 복합재료로 접착된 탄소섬유를 고온(약 800~100$0^{\circ}C$, 1시간)으로 가열한 후 가열된 섬유판의 인장, 휨 전단내력을 검토하여 내열성능을 파악하고 이 섬유쉬트로 보강한 철근콘크리트 부재의 휨 성능을 실험적으로 규명하여 화재의 위험이 있는 구조물에 구조적인 보강재료로 사용이 가능한가를 검토하였다. 연구 결과, 개발된 무기계 폴리머 복합체는 인장강도, 휨강도 및 접착강도가 유기계 접착제와 유사하게 나타났고 800~100$0^{\circ}C$ 정도로 1시간 가열한 이후에도 상온 시험체 휨내력과 전단내력의 63%, 33% 정도를 유지하여 화재의 위험이 있는 부위에도 사용이 가능한 것으로 판단되었다.