• Title/Summary/Keyword: 휨 파괴 하중

Search Result 348, Processing Time 0.032 seconds

Analysis on the Shear Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석)

  • Ha, Soo-Kyoung;Son, Guk-Won;Yu, Sung-Yong;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.18-28
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71% (형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.102-111
    • /
    • 2022
  • The aim of this study is to assess the seismic performance of octagonal hollow cross section reinforced concrete bridge pier, and to investigate the effect of longitudinal reinforcement ratios on the failure behavior. Four octagonal hollow section RC bridge columns of small scale model were tested under a quasi-static cyclically reversed horizontal load with constant axial load. The volumetric ratio of transverse spiral hoop of all specimens was maintained constant(0.206%), the ratios of longitudinal reinforcement were varied(2.36 ~ 4.71%). Failure behavior and seismic performance were investigated. Three specimens with the exception of lap spliced specimen showed flexure-shear failure at final stage. The test results with the exception of lap spliced specimen showed that the displacement ductility factor and accumulated energy dissipation decreased in inverse proportion to the ratio of longitudinal steel.

Delamination behavior of multidirectional laminates under the mode I loading (모드 I 하중조건하에 있는 다방향 적층 복합재료의 층간파괴거동)

  • Choi, Nak-Sam;Kinloch, A.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.611-623
    • /
    • 1998
  • The delamination fracture of multidirectional carbon-fiber/epoxy laminates under the Mode I condition has been studied using the modified beam analysis for a fracture mechanics approach. It was found that the variation of fracture energy $G_IC$ with increasing length of the propagating crack exhibited a minimum for the pure interlaminar fracture and a maximum for the intraply fracture,i.e. a rising "R-curve", which was strongly affected by the degree of fiber bridging and crack-tip splitting arising in the global delamination. The maximum $G_IC$ value was significantly dependent on such types of delamination as no crack jumping, crack jumping into the adjacent ply and edge-delamination. It was shown also that the value of "effective flexural modulus" estimated from the modified beam analysis increased much with the development of fiber bridging behind the crack tip.ehind the crack tip.

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.

숏크리트 거동에 대한 갱도모형실험과 수치해석의 비교

  • Yu, Gwang-Ho;Lee, Min-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.112-121
    • /
    • 2007
  • 지보재의 파괴가 고려된 터널의 안전율을 산정하기 위해 허용응력 설계법에 기초하여 숏크리트 내에 발생하는 응력이 허용응력을 초과하면 숏크리트가 파괴된다고 가정하고, 전단강도 감소기법을 이용하여 수치해석적(2차원)으로 구하는 방법이 유광호 등(2005)에 의해 제시되었다. 하지만 허용응력 설계법에 근거한 방법은 숏크리트의 허용 휨응력을 과소평가하여 터널의 안정성 및 안전율을 과소평가하는 경향이 있다. 따라서 본 논문에서는 숏크리트의 파괴거동을 갱도모형실험을 통해 확인하고 3차원 수치해석에 의해 검증하였다. 갱도모형실험에 사용된 터널은 실제 터널의 거동을 모사하기 위해 폭 3.3m, 높이 2.9m, 깊이 0.5m의 마제형으로 제작되었다. 지보재인 숏크리트는 거푸집을 이용하여 타설하고 28일간 양생하였고 7개의 실린더와 30cm의 모래 뒷채움을 이용하여 지보재에 최대한 등방하중이 가해질 수 있도록 하여 실험을 수행하였다.

  • PDF

The Evaluation of flexure performance of SCP modules for LNG outer tank (LNG 외조탱크 적용을 위한 SCP 모듈의 휨성능 평가)

  • Park, Jung-Jun;Park, Gi-Joon;Kim, Sung-Wook;Kim, Eon;Shin, Dongkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.447-455
    • /
    • 2019
  • When constructing LNG storage structures using the cast-in-place method in extreme areas, the construction cost and time may be increased due to the poor working environments and conditions. Therefore, demand for modular energy storage tanks is increasing. In this study, we propose using an SCP module as an alternative for lighter-weight LNG storage tanks. The purpose of this study is to evaluate the feasibility of LNG storage outer tanks by performing bending tests on the thickness of composite steel plate concrete under field conditions. The loads on specimens with thicknesses of 100 mm and 200 mm were linearly increased to the design final loads of 413 kN and 822 kN, respectively. The slope was rapidly changed, and fracture occurred. The two test conditions showed linear behavior until the steel plate yielded, and after an extreme load behavior, sudden yielding of the steel plate yield occurred in the SCP bending test according to the INCA guidelines. The results satisfied the design flexural load and showed the possibility of using the specimens in a modular LNG outer tank. However, it is necessary to evaluate the structural performance of the SCP by performing compression and shear tests in future research.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Characteristics of RC Exterior Joint Designed to Gravity Load (중력하중에 설계된 RC골조 외부접합부의 내력특성)

  • Lee, Young-Wook;Park, Hyung-Gweon;Choi, Duk-Beom;Chae, Ji-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.115-116
    • /
    • 2010
  • To research the fragility of exterior joints of RC frame building which are not designed to seismic design code, four T shaped beam-column subassemblies are designed and tested with displacement control until to reach 3.5% story drift. From the results, the non-seismic detailed specimen failed in exterior joint before to reach to 1.0% drift, which is far less than the recommendation value of FEMA 356 and their strengths are less than 0.85 times of the nominal flexural strength.

  • PDF

Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate (CFRP로 보강된 철근콘크리트 보의 거동 특성)

  • Park, Jung-Yeol;Hwang, Seon-Il;Cho, Hong-Dong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • This paper presents the characteristics of flexural behavior of RC beam strengthened with CFRP(Carbon Fiber Reinforced Polymer Plate). Experimental variables included the strengthening length, width, reinforcement ratio, end anchorage and preloading corresponding to 75 percent of ultimate capacity and the effects according to each experimental variables were analyzed. To study, a total 21 RC beams were constructed, tested and the response of the beams in terms of ultimate load, deflection, strain of CFRP, failure mode were examined.

Flexural Behavior of Reinforced Concrete Beams Retrofitted with Modified Polymer Mortar System (폴리머 모르타르로 단면을 복구한 철근콘크리트 보의 휨 거동)

  • Hong Geon-Ho;Choi Eun-Gyu;Lee Su-Jin;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.94-101
    • /
    • 2004
  • This study shows the test results of seven RC beams retrofitted with modified polymer system and parametric study about the effects of tensile strength of retrofitting materials by analytical method on the flexural behavior. The main parameters are the retrofitted depth and length. The beams are loaded to the failure by four-point loading. Test results show that the effect of the retrofitted length on the structural behavior is more significant than that of depth. As the retrofitted depth is increased, the beams represents the brittle failure mode The non-linear analysis is carried out to grasp the effect of the tensile strength of retrofitting material on the structural behavior. As the retrofitted depth and length are increased, the tensile strength becomes more effective so these parameters should be considered to determine the retrofitted area. The analytical results show that failure strength is less than that of experimental results, but the stiffness is vice versa.