• Title/Summary/Keyword: 휨 시험

Search Result 677, Processing Time 0.025 seconds

The Fatigue Life Evaluation of Continuous Welded Rail on a Concrete Track in an Urban Railway (도시철도 콘크리트궤도 장대레일의 피로수명 평가)

  • Kong, Sung-Yong;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • In this study, fatigue tests on existing continuous welded rail (CWR) on a concrete track were carried out. Based on the test results, a S-N curve expressing the remaining life of the CWR at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails had different histories in terms of accumulated passing tonnage, the test data were corrected to average out the accumulated passing tonnage. The remaining service life for the CWR on the concrete track in an urban railway was estimated using the prediction equation for the bending stress of rail developed in the past to estimate rail base bending stress and taking the surface irregularities into consideration. Estimating the remaining service life of the CWR in an urban railway showed that the rail replacement period could be extended over 200MGT. In addition, comparing the concrete track to the ballast track, the fatigue life of rail was analyzed as approximately 300MGT higher than. Therefore, the rail replacement criteria needs to distinguish between the ballast track and the concrete track, and not the criteria needs to be changed as a target for the maintenance, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding.

Physical and Mechanical Properties of Magnesium Oxide Matrix depending on Addition Ratio of Magnesium Chloride (염화마그네슘 첨가율에 따른 산화마그네슘 경화체의 물리 및 역학적 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Recently, for longevity of resident building, the main trend is that the change of the inside space organization of resident building from wall construction to rhamen construction, which resulted in increase in use of lightweight composite panel. Thus, in this study, authors analyzed the engineering property of oxide of magnesium depending on the magnesium chloride addition ratio. The results of this research is expected to contribute on providing a fundamental material for the surface materials of lightweight composite panel. As the result of the experiment, as fluidity increased, air content decreased and initial set and final set as the magnesium chloride addition ratio increase. In the aspect of flexural strength and compressive strength, the test specimen showed the highest strength at 40% of the magnesium chloride addition ratio. At 20% of the magnesium chloride addition ratio, the test specimen showed the lowest water absorption rate. As the magnesium chloride addition ratio increases, the expansibility tends to increase as well in the aspect of shrinkage strain. After observing microstructure, we can see hydration products in the form of needle. It appeared high flexural strength because the hydration products have mineral fibrous tissue shape, which also contribute to the cause of the expansibility.

Studies on Laminated Wood(4) -Gluing faculties of laminated wood made of important species in our country- (집성재(集成材)에 관(關)한 연구(硏究)(제(第)4보(報)) -국내산(國內産) 주요수종(主要樹種) 집성재(集成材)의 접착성능(接着性能)-)

  • kim, Su-Chang
    • Journal of Forest and Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 1983
  • Two species which belong to a needle-leaf tree, three species which belong to a broad-leaved tree and three resins were selected and made into samples. They were glued in the amount of spread-$200g/m^2$, clamping pressure-$10kg/cm^2$ and room temperature during 48 hrs. This experiment was carried out to investigate results on gluing faculty tests with examining block shear strength, wood failure, tensile strength and bending strength. The result obtained may be summarized as follows. 1. Strength values of each resin made not difference, but those of each species had difference. 2. The result which Picea Koraiensis Nakai had good wood failure reveals better resin strength than wood strength. 3. Pinus Koreaiensis sieb. et Zucc. had poor tensile strength regardless of resins. 4. A broad-leaf tree, Robinia pseudoacacia Linne had good bending strength.

  • PDF

Experimental Study on Flexural Capacity of Column Base Plate Made of Cast Steel (주강제 노출형 철골주각부의 휨 성능에 관한 실험 연구)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.93-102
    • /
    • 2005
  • Manufacturing conventional column base plate requires much manpower and time. In this research, a new method for constructing column base plate is introduced to improve on conventional methods through the use ofcast steel that is available for adjusting base plate thickness and enlarging base plate stiffness. The main purposes include reducing welding work, enlarging base plate stiffness, and clarifying the stress flow. Also, construction convenience and improvement in quality can be expected. For developing this cast steel base plate, test specimens of conventional and cast steel base plates are made and tested to analyze strength and stiffness. Also, the efficiency for long-term use is checked by fatigue tests. From these comparative tests, cast steel base plates have the same strength and stiffness as conventional base plates.

A Study on the Base Properties of Nickel Type-Antifungal Agent for Reinforced Concrete Hume Pipe Lining (철근콘크리트흄관 라이닝용 니켈계 방균제의 기초적 특성 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.41-47
    • /
    • 2010
  • It has been continuously noted that many sewage treatment concrete structures have deteriorated due to sulfur-oxidizing bacteria. There have been many reports on approaches to protecting concrete from this bacteria corrosion. The purpose of this study is to evaluate the inhibition of growth of a sulfur-oxidizing bacterium by a antifungal agent such as $NiSO_4{\cdot}6H_2O$, and the characteristics of polymer cement mortar using nickel type antifungal agent. First, we developed antifungal agents using metal nickel and $NiSO_4{\cdot}6H_2O$ to inhibit the growth of thiobacillus novellus, which is the sulfur-oxidizing bacteria in concrete. Then, ordinary cement mortar and polymer cement mortar using nickel type antifungal agent with various polymer-cement ratios, and antifungal agent content were prepared, and were tested for the antifungal adding effect, compressive and flexural strengths, expansion and leaching of nickel ion. From the test results, it was confirmed that the adding of an antifungal agent has an inhibition effect on the growth of sulfur-oxidizing bacteria at antifungal agent contents of 20 mM or more. In addition, the strengths and expansion of polymer cement mortars are not significantly changed by the addition of an antifungal agent. Therefore, the nickel-type antifungal agent developed in this study can be used to improve the durability of reinforced concrete hume pipe in the construction industry.

Evaluation of Beam Behavior with External Bonded L-type GFRP Plate through bending Test (L형 GFRP 외부부착 보강된 보의 휨 실험을 통한 보강 거동분석)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Kim, Jin-Sup;Nam, Gwang-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.86-93
    • /
    • 2020
  • The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's "Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

Flexural Strength Evaluation of Steel Plate-Concrete Composite Beam using Bolted (절곡 강판을 볼트로 체결한 강판-콘크리트 합성보의 휨강도 평가)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.126-136
    • /
    • 2018
  • A steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine inhomogeneous two materials. The steel plate is assembled by welding an existing composite beam. In this study, new steel-plate concrete composite beam, called a SPC Beam, was developed to reduce the shear connector and improve the workability. The SPC Beam was composed of folding steel plates and concrete, without a shear connector. The folding steel plate was assembled using high strength bolt instead of welding. To improve the workability in field construction, a hat-shaped Cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode. The flexural strength of the specimen for positive moment and negative moment was calculated using the plastic stress distribution method. The test results showed that the flexural strength of the new SPC Beam had 80% of the strength of a complete composite beam. In addition, increasing the composite ratio was possible through clearance controls of the cap. In this study, the performance of the SPC Beam was verified through additional experiments and analyses with the cross-sectional shape and cap as variables, because the representative shape in the positive negative moment region is targeted.

A Study on the Quality Properties of Porous concrete for Pavement Using Silica Fume and Steel Fiber (실리카퓸 및 강섬유를 이용한 포장용 포러스콘크리트의 품질특성에 관한 연구)

  • Park, Seung-Bum;Lee, Jun;Seo, Dae-Seuk;Yoon, Eui-Sik
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.31-42
    • /
    • 2005
  • This study evaluates the physical mechanical properties, durability and sound absorbtion of porous concrete for pavement according to content of silica fume and steel fiber to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of Korea National Housing Corporation as for every factor of mixture but in the case of the flexural strength, more than 0.6vol.% of steel fiber satisfied the Japan Concrete Institute proposition values. The mixture of silica fume and steel fiber presents the excellent intensity, though. The case when silica fume and steel fiber are used simultaneously presents the strongest durability because the durability shows the similar tendency to the dynamic characteristics. The case when 10wt.% of silica fume and 0.6vol.% of steel fiber are used at the same time shows that the loss rate of mass by Cantabro test became 27% better and freeze-thaw resistance became 60% better. As for the characteristics of sound absorption of porous concrete for pavement, Noise Reduction Coefficient is 0.48 to prove that it possesses almost 50% sound absorption.

  • PDF

Characteristics of Concrete Sidewalk Block Manufactured Using Stone Powder Sludge and photocatalytic agent (석분슬러지와 광촉매제를 사용한 콘크리트 보도블록의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4237-4244
    • /
    • 2015
  • This study examined the efflorescence characteristics of a concrete sidewalk block manufactured using recycled stone powder sludge and photocatalytic generated by surface polishing during the sidewalk block manufacturing process. The study evaluated the characteristics of the sidewalk block in terms of its quality, based on the amount of stone powder sludge used, efflorescence, and further based on the mixing ratio and number of applications of the photocatalytic. The experimental results indicated that heavy metals such as lead, hexavalent chrome, cadmium, and mercury were not present in the concrete sidewalk block, thereby confirming the effectiveness of the recycled stone powder sludge. The optimum mixing ratio of used in the concrete sidewalk block (for satisfying KS standard values such as water absorption ratio and flexural strength) was found to be 20%. The concrete sidewalk block incorporating the stone powder sludge and photocatalytic exhibited a water absorption ratio of 5.4% and flexural strength of 5.2 MPa, thereby satisfying the quality standards. Additionally, when the photocatalytic was used, efflorescence did not occur even at the low temperature of $-5^{\circ}C$, and the by the sidewalk block was found to be 70% under normal conditions and 68% when subjected to an accelerated weathering test.