• Title/Summary/Keyword: 휨 보강재

Search Result 238, Processing Time 0.022 seconds

Studying on the Hybrid FRP Stiffener for the Performance Improvement of Strengthened RC Beam (철근콘크리트 보의 성능개선을 위한 Hybrid FRP 보강재 연구)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.243-244
    • /
    • 2010
  • Reinforced concrete beam are very diverse materials that are used to bending reinforcement. Recently the case of FRP flexural reinforcement is actively being used is an excellent weight - rigidity. However, use of FRP bending reinforcement in brittleness material properties of concrete in an actual field application causes destruction of detachment and attachment is being considered as a major cause of destruction. For hybrid laminating plates, tensile and three-point bending tests were performed considering various designs and fabricating methods for hybrid FRP plates. Tensile property of each test specimen was investigated and the research parameter of hybrid laminating plates considered here is the combining ratio of fiber to aluminum contents.

  • PDF

A Study on the Flexural Capacity of Rectangular Section Wood Using Synthetic Resins (합성수지를 이용한 사각단면 목재의 휨 보강 성능에 관한 연구)

  • Park, Kwang-Seob;Kang, Pyeong-Doo;Ha, Jong-Han;Park, Sung-Moo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.106-114
    • /
    • 2009
  • The basis principle of conservation about deterioration and corrosion of cultural assets building is the archetype maintenance, and should not make a factitious damage mistake by repair. Accordingly, conservation processing method using synthetic resins is embossed. The purpose of this paper is about flexural capacity of rectangular section wood using synthetic resins, the 11 specimens are manufactured and made an experiment about reinforcement length, ratio, material strength, direction of synthetic resins as variable. The results of this paper has shown that flexural reinforcement of wood by synthetic resins are efficient and found the possibility of using.

The Performance Improvement of Strengthened RC Beams Using an Inserted Plate (FRP-콘크리트 경계면 삽입플레이트 활용을 통한 휨 보강 철근콘크리트 보의 성능개선)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.73-74
    • /
    • 2010
  • The objective of this research is to improve the flexural capacity of RC Beams. To delay prematured tension failure of concrete specimen and to improve flexural capacity of RC beam by increasing the contribution of FRP strengthening plates, a method for inserting a laminate to the interface between concrete and FRP materials. This method makes it possible to increase overall flexural performance of RC beam by FRP plate compared to normal RC beams and RC beam strengthened by bonded FRP plates. The new bonding technique is applicable to all types of reinforcement available FRP laminate, and in principle is also applicable to materials other than FRP.

  • PDF

Flexural Capacity of Concrete Beam Strengthened with Near-Surface Mounted Carbon Fiber Reinforced Polymer (탄소섬유 보강재로 표면매립에 의해 보강된 철근 콘크리트 보의 휨 보강성능)

  • Oh, Hong Seob;Sim, Jong Sung;Ju, Min Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.84-92
    • /
    • 2008
  • This study is to investigate the flexural performance of Near Surface Mounted (NSM) strengthening method using Fiber reinforced Polymer (FRP) materials to concrete structures. For this study, the inverse-shaped trapezoid CFRP composite material which has been registered as New Excellent Technology (NET) 351 was adopted to the concrete structure. In this study, two types of the CFRP types were considered; Type A ($15{\times}13{\times}6mm$) and Type B ($4{\times}3{\times}10mm$) with different strengthening ratio. In the result of the test, it was proved that NSM strengthened specimens had more flexural performance of 20-100% than that of the unstrengthened specimen. With this test result, the structural efficiency was investigated based on the coefficient of ductility and coefficient of crack resistance.

An Experimental Study on the Flexural Strengthening Effect of Reinforced Concrete Beams Flexural Strengthened by CFRP (CFRP로 보강된 철근콘크리트 보의 휨 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won;Shin, Seung-Hyup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.123-129
    • /
    • 2006
  • Recently, many researches have been conducted about reinforced concrete structures strengthened with FRP plates. In case of structures strengthened with FRP plates, the issue of premature debonding FRP plate has been raised through many previous researches. The purpose of this paper is what structural behavior and flexaural capacity of reinforced concrete beams which are strengthened for flexure is investigated about the using secondary ironware in the method of external bonded CFRP plate, and the method of near surface mounted CFRP-Rod. Also, in order to evaluate flexural capacity, experiments of the reinforced concrete beams with exteranl bonded CFRP plate and near surface mounted CFRP-Rod have been compared and investigated.

  • PDF

Construction Method Improvement of the FRP-plate Strengthening Method using the Velcro (벨크로를 이용한 FRP 플레이트 보강공법의 시공공법 개선)

  • Hong, Geon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.225-232
    • /
    • 2008
  • The object of this paper is to study the flexural strengthening effectiveness on the construction method of bonding of the FRP. The existing FRP flexural strengthening methods were divided into FRP sheet strengthening and FRP plate strengthening according to the FRP condition. For improving the existing construction method, this paper proposed the velcro type anchorage system for temporary bonding material, and flexural strengthening effects were tested. Test variables were bonding methods of the FRP strengthening materials, and total 4 specimens were tested. Following to the test results, it is shown that FRP-plate strengthening method using the velcro can get better workability than existing construction methods, and have excellent strengthening performance including flexural strength, stiffness, ductility and failure aspect.

Flexural Performance and Crack Damage Mitigation of Plain Concrete Beams Layered with Reinforced SHCC Materials with Polyethylene Fibers (폴리에틸렌 단일섬유를 혼입한 SHCC로 휨 보강된 콘크리트 보의 균열손상 제어 및 휨 성능)

  • Kim, June-Su;Lee, Young-Oh;Shim, Young-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2012
  • Required performance for repair materials are strength, ductility, durability and bonding with the substrate concrete. Various kinds of fiber-reinforced cement composites (FRCCs) have been developed and used as repair materials. Strain-hardening cement based composites (SHCC) is one of the effective repair materials that can be used to improve crack-damage tolerance of reinforced concrete (RC) structures. SHCC is a superior FRCC that has multiple cracking characteristic and pseudo strain-hardening behavior. The expansive admixture, which can be used to reduce shrinkage in SHCC materials with less workability by controlling interfacial bonding performance between SHCC and substrate concrete. For the application of SHCC as a repair material to RC structures, this study investigates the flexural performance of expansive SHCC-layered concrete beam. Test variables include the replacement levels of expansive admixture (0 and 10%), repair thickness (30 and 40 mm), and compressive strength of SHCC (30, 70 and 100 MPa). Four point bending tests on concrete beams strengthened with SHCCs were carried out to evaluate the contribution of SHCC on the flexural capacity. The result suggested that expansive SHCC materials can be used for repairing and strengthening of concrete infrastructures.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.

An Experimental Study on the Strengthening Effect of RC Beams Strengthened by CFRP (탄소섬유 보강재로 보강한 RC 보의 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.71-77
    • /
    • 2005
  • Bonded CFRP Plate method used murk in reinforcement method is very efficient for stress increment of reinforced members. But CFRP plate dosen't display enough its capacity and have the destruction characteristic of premature failure that reach failure by debond plate, because near-surface-bond using epoxy. Such destruction character of reinforced specimens take the influence at variables as steel reinforcement ratio, concrete strength, kind of reinforcement materials, reinforced length, property of epoxy used in binder and so on. In this study, performed experiment results are compared and considered on flexural performance of Near Surface Mounted Reinforcement used CFRP-Rod, as complement about structural behavior of RC beam reinforced flexural capacity in CFRP plate and premature failure of reinforcement material. Main variables of RC beam applied CFRP Plate external bond method are experimental variables as reinforcement length, reinforcement position (tension face and side face of beam) and existence of ironware in end parts. In case of CFRP-Rod, variable is reinforcement length.

  • PDF

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.