• Title/Summary/Keyword: 휨 강성

Search Result 557, Processing Time 0.023 seconds

Analysis on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported Reinforced Concrete Beams (철근콘크리트 단순보의 유효 단면2차모멘트에 대한 모멘트 분포 형상의 영향 분석)

  • Park, Mi-Young;Kim, Sang-Sik;Lee, Seung-Bae;Kim, Chang-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • The concept of the effective moment of inertia has been generally used for the deflection estimation of reinforced concrete flexural members. The KCI design code adopted Branson's equation for simple calculation of deflection, in which a representative value of the effective moment of inertia is used for the whole length of a member. However, the code equation for the effective moment of inertia was formulated based on the results of beam tests subjected to uniformly distributed loads, which may not effectively account for those of members under different loading conditions. Therefore, this study aimed to verify the influences of moment shapes resulting from different loading patterns by experiments. Six beams were fabricated and tested in this study, where primary variables were concrete compressive strengths and loading distances from supports, and test results were compared to the code equation and other existing approaches. A method utilizing variational analysis for the deflection estimation has been also proposed, which accounts for the influences of moment shapes to the effective moment of inertia. The test results indicated that the effective moment of inertia was somewhat influenced by the moment shape, and that this influence of moment shape to the effective moment of inertia was not captured by the code equation. Compared to the code equation, the proposed method had smaller variation in the ratios of the test results to the estimated values of beam deflections. Therefore, the proposed method is considered to be a good approach to take into account the influence of moment shape for the estimation of beam deflection, however, the differences between test results and estimated deflections show that more researches are still required to improve its accuracy by modifying the shape function of deflection.

Performance Evaluation of Floor Vibration of Biaxial Hollow Slab Subjected to Walking Load (보행하중에 대한 2방향 중공슬래브의 진동성능 평가)

  • Kim, Min-Gyun;Park, Hyun-Jae;Lee, Dong-Guen;Hwang, Hyun-Sik;Kim, Hyun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.11-21
    • /
    • 2009
  • Considering that the weight of a biaxial hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a biaxial hollow slab is not significantly lower than that of a general solid slab, there has been a growing need for biaxial hollow slab systems, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a biaxial hollow slab system are quite different from the conventional floor systems. Therefore, in this study, the floor vibration of a biaxial hollow slab system subjected to walking load is investigated in comparison with a conventional floor slab system. For the efficiency of time history analysis, an equivalent plate slab model that can precisely represent the dynamic behavior of a biaxial hollow slab system is used. From the analytical results, it was determined that vibration of a biaxial hollow slab system subjected to walking load is evaluated as "office-level vibration," according to the classifications of the architectural institute of Japan and ANSI.

Seismic Characteristic Evaluation on Strip-type Damping Devices with Optimized Shape (최적 형상 스트립형 감쇠장치의 내진 특성 평가)

  • Hwang, Jung-Hyun;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • This paper aims to investigate the seismic characteristics of strip-type damping devices possessing optimized shapes for the moment-resisting mechanism throughout analytical and experimental studies. Predicting equations for initial stiffness and yielding strength were introduced and compared with analytical results obtained from finite element analyses (FEAs) using commercial FEA program ABAQUS. In order for establishing predicting equations, two idealized processes were considered and both predicting equations showed that they could provide enough approximations for seismic applications in building structures. Throughout experimental studies, it was noted that structural uncertainties on mild steels, connection details and structural types linking damping devices with building structures could interrupt predicting structural behavior of the devices. Also, it was observed that shear stress concentrations should be considered if shear yielding type devices are applied into building structures. Nevertheless, it was shown that structural conservatism can be established using the predicting equations and seismic applications of the damping devices can enhance the seismic performance of building structures efficiently in the viewpoint that they have high resistance to low-cycle fatigue failures.

Application of Prefabricated Retaining Walls with Steel Lagging (강재 요소를 적용한 조립식 흙막이 벽체에 관한 연구)

  • Hong, Jong woo;Choi, Jae Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1277-1285
    • /
    • 2015
  • It has been known that the conventional retaining wall system with timber lagging and H pile has several problems such as the irregular gap between H-piles, cutting or adding to standard timber, back fill over first step excavation, and especially break-down accident at the disjoint of wall system. In the practical excavation, these problems may lead to worker's accident and the inefficiency of construction economy. To solve the above problems, a new method using prefabricated retaining wall was proposed and verified. The characteristics of the new method is to replace timber wall as free-sliding steel-lagging and connector. To check its verification and application, laboratory tests such as bending strength, tensile strength, and fatigue strength were carried out. Also, a pilot test in the field and numerical simulations under various ground conditions were performed. From the researches, it is found that the prefabricated retaining wall plate can be superior to the conventional timber lagging plate in the strength. It is also found that the proposed methods can be effective in the reuse of retaining wall plate and safe in the disjoint of wall system. Finally, it is desired that the proposed method will be effective in the reduction of the imported timbers and helpful in the safety of retaining wall construction.

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

Simple Model for Preliminary Design of Hexagrid Tall Building Structure (헥사그리드 고층건물구조의 예비설계를 위한 단순모델)

  • Lee, Han-Ul;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • High-rise building shapes are changing from orthogonal to irregular form and the current trend is to arrange members in geometric grid-patterns at the perimeter of buildings. This study proposes a simple model for the preliminary design of a hexagrid high-rise building. The size of the cross section is set to be different at each module and hexagrid unit, which is different from the previous studies in which all hexagrid members were the same. To examine the effect of hexagrid size on structural performance, 60-story hexagrid buildings with 1-, 2- and 4-story high modules are designed and analyzed. Maximum lateral displacement, steel tonnage, load carrying percentage of perimeter frame and combined strength ratio are compared for 15 buildings. As the lateral load carrying capacity of hexagrid structure was inferior to a diagrid structural system, proper lateral stiffness should be allocated to the core frame in a hexagrid structure. The best ratio of flexural to shear deformation was 4 and larger unit size was better in considering constructional cost and structural efficiency. As the maximum lateral displacements of the buildings were within 84%~108% of the limit, the proposed method seems to be applicable to preliminary design of hexagrid buildings.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

Development of Non-linear Analysis Model for Torsional Behavior of Composite Box-Girder with Corrugated Steel Webs (복부 파형강판을 갖는 복합교량의 비틀림 거동에 대한 비선형 해석 모델 개발)

  • Ko, Hee Jung;Moon, Jiho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.153-162
    • /
    • 2011
  • Composite box-girder with corrugated steel webs has been widely used in civil engineering practice as an alternative of conventional pre-stressed concrete box-girder because the efficiency of pre-stressing can be increased and weight reduction of superstructure can be achieved by replacing concrete webs as a corrugated steel webs. However, most of previous researches were limited in shear and flexural behavior of such girder so that the torsional behaviors of composite box-girder with corrugated steel webs are not fully understood yet and it needs to be investigated. Some of previous researchers developed the nonlinear theory for torsional analysis of composite box-girder with corrugated steel webs. However, their theories were developed by ignoring the tensile behavior of concrete. Thus, there are certain limitations in analysis of serviceability such as cracking moment and torsional stiffness of the girder. This paper presents the analytical model for torsional behavior of composite box-girder with corrugated steel webs considering tensile behavior of concrete. Based on the proposed analytical model, nonlinear torsional analysis program of composite box-girder with corrugated steel webs was developed. Then, for verification of validation of the developed model, test for the girder was conducted and the results were compared with those of analytical model. Finally, parametric study was conducted and the effects of tensile behavior of concrete on the torsional behavior of the girder were discussed.

Effects of flange and web slenderness ratios on elastic flange local buckling of doubly symmetric I-girders (이축 대칭 I형 거더의 플랜지 탄성좌굴에 대한 플랜지와 복부판 세장비의 영향)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Byun, Nam-Joo;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.456-464
    • /
    • 2016
  • Increasing the strength of structural materials allows their self-weight to be reduced and this, in turn, enables the structures to satisfy esthetic requirements. The yield strength of high-performance steel is almost 480 MPa, which is approximately 50% higher than that of general structural steel. The use of high strength materials, however, makes the sections more slender, which can potentially result in significant local stability problems. The strength of slender element sections might be governed by their elastic buckling behavior, and the elastic buckling strength is very sensitive to the boundary conditions. Because the web provides the boundary conditions of the compressive thin-flange, the stiffness of the web can affect the elastic buckling strength of the flange. In this study, therefore, the effects of the flange and web slenderness ratios on the elastic flange local buckling of I-girders subjected to a pure bending moment were evaluated by finite element analysis (FEA). The analysis results show that the elastic local buckling strength and buckling modes were affected not only by the web support conditions, but also by the flange and web slenderness ratios.