• Title/Summary/Keyword: 휨량

Search Result 3, Processing Time 0.021 seconds

Design of Geometric Adaptive Controller for the Shaft Straightening Machine (축교정기용 기하학적 적응제어기 설계)

  • 안중용;안동철;김승철;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.623-627
    • /
    • 1995
  • This paper deals with the process which automatically straightens the shaft whose straightness is over the tolerance. The developed straightening process is composed of the measuring module and the control module. In the measuring module, the deflection of each measuring point is automatically measured, and the press point and the reference press stroke is determined. In the control module, the springback is predicted by the observer using the calculated reference press stroke and on-line-measured force and deflection. Through a series of experiments, the validity of the proposed process was verified.

  • PDF

Development of Shaft Straightening Machine with Springback Observer (스프링백 관측기를 이용한 축교정기 개발)

  • 안중용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.22-30
    • /
    • 1996
  • In order to compensate for out-of-straightness of shafts, an automatic straightening process composed of an automatic measuring module, an automatic control unit and operating softwares was developed with a hydraulic press. The out-of-sraightness of each shaft was measured automatically in the measuring stage. An optimal pressure point was determined to minimize TIR value of the shaft according to press count of 3-points bending process. In the geometric adaptive control procedure, punch stroke and springback of the shaft were predicted by an observer using on-line measured values of press force and deflection amount I each press count. An automatic straightening machine was realized with the measuring module, the GAC module, PLD, IBM-PC and the operating software on the hydraulic press. the validity of the proposed straightening process was confirmed through a series of experiments with cam shafts.

  • PDF

STRESS DISTRIBUTION OF THREE NITI ROTARY FILES UNDER BENDING AND TORSIONAL CONDITIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (세가지 니켈 티타늄 파일의 휨과 비틀림 조건에서의 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Tae-Oh;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.323-331
    • /
    • 2008
  • Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis. Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account. The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal. Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.