• Title/Summary/Keyword: 휨강도 시험

Search Result 448, Processing Time 0.024 seconds

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF

An Experimental Study on Crack Self-Healing and Mechanical Recovery Performance of Cement Composites Materials Using Encapsulated Expandable Inorganic Materials based Solid Healing Materials (캡슐화된 팽창성 무기재료 기반 고상 치유재 활용 시멘트 복합재료의 균열 자기치유 및 역학적 회복성능에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.92-100
    • /
    • 2022
  • In this paper, to evaluate the effect of SC on the crack self-healing performance and mechanical recovery performance of cement composites, encapsulated intumescent inorganic material-based solid healing materials were prepared. SC was mixed with cement composite materials to evaluate the basic properties, permeability test, and load reload test. SC slightly improved the flow of cement composites, and the compressive strength decreased by about 10 %. Also, the flexural strength decreased by about 30 %. It was found that when SC was mixed with the cement composite material by 5 %, the crack self-healing rate of Plain was improved by about 𝜟10 %. As a result of the load reload test, it was found that the mechanical recovery rate of Plain was improved by about 𝜟20 %. In addition, as a result of analyzing the correlation between the crack self-healing rate and the mechanical recovery rate by the load reload test, it is judged that the healing area of the Plain can be increased due to SC.

Evaluation of Beam Behavior with External Bonded L-type GFRP Plate through bending Test (L형 GFRP 외부부착 보강된 보의 휨 실험을 통한 보강 거동분석)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Kim, Jin-Sup;Nam, Gwang-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.86-93
    • /
    • 2020
  • The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's "Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

Damage Evaluation on the Concrete Using Acoustic Emission (음향방출(AE)을 이용한 콘크리트의 손상도 평가)

  • 이웅종;조홍동;이종열;한상훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.750-758
    • /
    • 2002
  • Concrete is deformed by load and subjected to micro damage under allowable deformation because of non-homogeneous property. When micro damage is accumulated, it is cracked and finally fractured. Characterization of AE can be demonstrated the micro damage which it is not discovered from visual observation, and it become known to an advantage that was clearly discriminated from the existing NDT method. This study was carried out the analysis and evaluation of concrete damage by acoustic emission technique. As a results of damage analysis, it was found out that the more concrete strength has increased, the more concrete has subjected to micro damage at lower stress ratio for chylinder specimen, and this is possible only AE method which could be described the brittle properties. Also it was revealed that the kaiser effect and felicity effect were existed in reinforced concrete bending specimens and it is found out that the onset of interface debonding between concrete and steel could be conformed in comparison with felicity ratio, AE activity and load history. From the results of this study, it was conformed that the deteriorative degree of reinforced concrete structure should be evaluated using felicity ratios.

Charateristics of Soft Paving Materials used Eco-friendly (친환경 소프트 포장재의 공학적 특성에 관한 연구)

  • Jeon, Du-Jun;Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.206-213
    • /
    • 2019
  • Purpose: This study aims to develop eco - friendly paving materials using Sawdust and EPDM chips. Method: Materials are eco-friendly materials and have no environmental problems. By using EPDM chip, the walking feeling can be increased. Results: In this study, the optimum mixing ratio was calculated through mixing design test. Based on the blending ratio, the surface layer of the sidewalk is made of fine sawdust and EPDM chips. We used only sawdust of grain - 107 -size to make the base layer of the sidewalks and the surface layer of the bicycle road with the permeability and the anti - resilience, and suggested the application method through the test construction. Conclusion: This study the expected that the recent efforts of the government to reduce the elastic paving material, which is the environmentally harmful problem with the complete eco-friendly paving material, are expected to revive.

Evaluation of Strengthening Performance of Stiff Type Polyurea Retrofitted RC Slab Based on Attachment Procedure (경질형 폴리우레아의 개발 및 보강 순서에 따른 RC 슬래브의 성능 평가)

  • Kim, Jang-Ho Jay;Park, Jeong-Cheon;Lee, Sang-Won;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.511-520
    • /
    • 2011
  • Recent studies to improve reinforcement of structures have developed stiff type Polyurea by using highly polymized compound Polyurea, but the reinforcing effect of it appears to be merely good. To find the proper usage of Polyurea as structural reinforcement, stiff type Polyurea has developed by manipulating the ratio of the components that consist flexural type Polyurea and the developed stiff type Polyurea shows higher hardness and tensile capacity. The reinforcement effect evaluation of has been performed by the polyurea applied RC slab specimens, and the reinforcement effect of the combination of fiber sheet and polyurea has been tested. The results shows that the Polyurea applied specimens have significant improvement on hardness and ductility compare to those of unreinforced. Also, the specimens that stiff type Polyurea is sprayed on fiber sheet reinforcement has higher reinforcing effect than only sheet reinforced specimens. However, the specimens that and fiber sheet attached after polyurea applied on showed that the high toughness of fiber sheet restrains the ductile behavior of Polyurea due to the high ductility, thereby the specimen suffers the concentration of load, which leads the brittle fracture behavior.

Development of a Drainage System to Mitigate Moisture Damage for Bridge Deck Pavements (교면포장의 수분손상 저감을 위한 체류수 배수공법 개발)

  • Lee, Hyun-Jong;Kim, Hyung-Bae;Seo, Jae-Woon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.129-140
    • /
    • 2007
  • A major purpose of this study is to develop a drainage system that can quickly drain water penetrated into pavement layers to mitigate pot holes which is one of the major distress types in bridge deck pavements. This system can be established by applying a thin drainage layer between waterproof and pavement layers. The most important elements for this system are the performance of waterproof layer and construction technique for the thin drainage layer. The porous asphalt mix with the maximum aggregate size of 10mm is first developed based on the porous asphalt mix design guide proposed by NCAT, and various physical and mechanical tests are performed to confirm that the porous mix satisfies all the specification requirements. In addition, a series of laboratory tests including low-temperature bending and bonding strength tests for the MMA(Methyl Methacrylate) type of waterproofing material. It is observed from the tests that the MMA material satisfies all the specification requirements. To evaluate the Reld performance of the drainage system, a field study has been conducted on a relatively small size bridge. The QC/QA tests are conducted on the both waterproofing and pavement materials. It has been found that the drainage system works well to drain the water penetrated into the pavement layers.

  • PDF

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Polymer Cement Mortar (폴리머 시멘트 몰타르 포장재용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.789-794
    • /
    • 2012
  • For the purpose of development of the latex suitable for polymer cement mortar, experiments on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization were performed. Methyl methacrylate, methacrylic acid and acrylic acid were selected as carboxylic co-monomer, styrene and butadiene as monomer, sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate as anionic emulsifiers, and nonylphenoxy poly (ethyleneoxy) ethanol (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were also used as redox initiator, and sodium monohydrogen phosphate and potassium carbonate as electrolytes. The effects of categories and concentration of carboxylic co-monomer, molecular weight control agent, crosslinking agent, and styrene/butadiene monomer ratio on the characteristics of latex were investigated. Polymerization recipes for preparation of polymer cement mortar could be proposed. The prepared latexes were tested for the physical properties such as compressive and flexural strength when latexes were mixed with cement mortar. The results showed that the latex could be adapted to polymer cement mortar. Also, it was recognized that the compressive and flexural strength were exhibited 25.4% and 45.3% respectively higher improvement than the quality standards at 28 days curing time.

The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate (잔골재의 투입시점에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축에 대한 기초적 연구)

  • Kim, Tae-Wan;Eom, Jang-Sub;Seo, Ki-Young;Park, Hyun-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2014
  • This paper examines the fundamental properties of alkali-activated slag cement (AASC) activated by sodium hydroxide (NaOH). The water to binder (W/B) ratio was 0.4 and 0.5. And concentration of activator were 2M and 4M. Five mix design of each W/B ratios was considered. The N0 mixture was KS L 5109 method and N1~N4 were varied in different mixing time, mix step and entering points of fine aggregate. Test results clearly showed that the flow value, strength and drying shrinkage development of AASC were significantly dependent on the entering point of fine aggregate. The flow value tended to decreases with delaying entering point of fine aggregate. The compressive strength and flexural strength increases with delaying entering point. Moreover, the XRD analysis confirmed that there were sustain these results. The drying shrinkage increases with delaying entering point of fine aggregate. Futhermore, a modified mixing method incorporating all hereby experimentally derived parameters, is proposed to improvement the physical properties of AASC.