• Title/Summary/Keyword: 휠 슬립율

Search Result 4, Processing Time 0.022 seconds

Experimental Analysis of Lunar Rover Wheel's Mobility Performance Depending on Soil Condition and Wheel Configuration (지반 조건 및 휠 형상에 따른 달탐사 로버 휠 주행 성능 평가 실험 연구)

  • Wang, Cheng-Can;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.693-703
    • /
    • 2017
  • Rover wheel's mobility depends on soil's condition and wheel's design. The purpose of this study is to evaluate the effect of soil conditions, which are Jumunjin sand and Korean lunar soil simulant (KLS-1), on wheel's motion performance. The experiments were performed by using a single wheel testbed with a wheel which grouser height is 15mm on Jumunjin sand and KLS-1, respectively. Also the influence of grouser length to wheel's mobility performance was studied. The experimental results of torque, drawbar pull and sinkage relating to slip ratio were discussed and analyzed to evaluate wheel's motion performance. Results showed wheel moving on KLS-1 has high performance than Jumunjin sand. Wheel's mobility performance was influenced by soil's properties of cohesion and frictional angle. In addition, wheel's performance of drawbar pull and Torque increased with the increasing of grouser length.

Experimental Study of Lunar Rover Wheel's Motion Performance on Korean Lunar Soil Simulant (한국형 인공월면토를 이용한 달탐사 로버 휠 성능평가 실험 연구)

  • Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.97-108
    • /
    • 2016
  • Lunar rover plays an important role in lunar exploration. Especially, performance of rover wheel related to interaction with lunar soil is of great importance when it comes to optimization of rover's configuration. In this study, in order to investigate the motion performance of lunar rover's wheel on Korean Lunar Soil Simulant (KLS-1), a single wheel testbed was developed and used to carry out a series of experiments with two kinds of wheel with grousers and without grousers which were used to perform the experiments. Wheel traction performance was evaluated by using traction parameters such as drawbar pull, torque and sinkage correlated with slip ratio. The results showed that the single wheel testbed was suitable for evaluation of the performance of wheel and rover wheel with grousers which was likely to have higher traction performance than that without grousers in Korean Lunar soil simulant. The experimental results could be utilized in verification of the optimum wheel design and effectiveness of wheel traction for Korean lunar rover.

Development of a Wheel Slip Control System for Vehicle Cornering Stability (차량 선회 안정성을 위한 휠 슬립 제어시스템 개발)

  • Hong, Dae-Gun;Huh, Kun-Soo;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre (타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어)

  • Kim, Jungsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.