• Title/Summary/Keyword: 휠 로더

Search Result 32, Processing Time 0.029 seconds

The Characteristic Analysis of the Load-sensitive Hydraulic Control System for Closed Center Type of a Wheel Loader (휠 로더용 폐회로형 부하 감응 유압 제어 시스템의 특성 해석)

  • Lee, Seung-Hyun;Song, Chang-Seop;Chung, Chun-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.934-942
    • /
    • 2007
  • In this study, the characteristics of the load-sensitive hydraulic control system for closed center type of a wheel loader were analyzed using developed analysis program based on Amesim tool. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the system parameter effects on the controllable region and the pump pressure and load pressure variations were studied. The results were compared with the experimental ones. The results and discussions of the present paper could aid in the design of a load-sensitive hydraulic control system for closed center type.

Analysis of the Main Factor of Wheel Loader Torque via Wireless Measurements (무선계측을 이용한 휠로더 구동토크의 주요인 분석)

  • Kang, Byung-Ik;Dong, Hong-Il;Kim, Byung-Ki;Choi, Yong-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2020
  • Measuring the torque of the wheel loader of a driving device is a preemptive task to ensure its performance. In this study, wireless torque measurements were successfully conducted. Moreover, based on the experimental results and the adopted design method, the key factor of torque generation, which is the main load in driving devices, was analyzed. Other data not analyzed in this paper will be the basis for the logical design of wheel loader-based driving devices.

A Study on the Optimal Shape Design of Front Axle of Wheel Loader using the Design of Experiments (실험계획법을 이용한 휠 로더 전 차축의 최적형상에 관한 연구)

  • Yoo, Dae-Won;Lee, Jai-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-200
    • /
    • 2012
  • Wheel loader is one of the construction machinery capable of variety of tasks and the demand on functional diversity and structural reliability is growing. As a study on the optimal shape design of front axle for wheel loader through the design of experiments, this paper assessed the design parameters affecting the maximum stress. As a result, a value of 126.77 MPa of minimum stress was obtained, and optimal factors showed the values of w = 100.0 mm, ${\theta}=40^{\circ}$ and R = 118 mm. It showed an accuracy of 98.7% compared with the structural analysis.

Development of an Automatic Transmission Simulator for a Wheel Loader (휠로더 자동변속기 시뮬레이터 개발)

  • Jung, G.H.;Shin, S.H.;Lee, S.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.7-20
    • /
    • 2007
  • TCU is a shift controller far automatic transmission of which major functions are to determine the shift point and manage the shifting process based on the various input signals. As the recent digital control technologies advance, it plays a key-role to improve a transmission performance and its algorithm becomes more complicated. This paper describes the development of transmission simulator fur wheel loader that enables a TCU for normal stand-alone operation by the real-time emulation of TCU interface signals. It can be utilized for the analysis of shift control algorithm implemented in a commercial TCU as well as for the development of brand new TCU.

  • PDF

Valve Analysis of Joystic steering System for Wheel Loader (휠로더 조이스틱 스티어링 시스템용 밸브 해석)

  • Ahn T.G.;Cheon T.H.;Kim Yong-Seok;Lim T.H.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.39-40
    • /
    • 2006
  • The operation of wheel-loader is mainly divided into steering and excavating. The existing wheel-loader is used by handle for steering operation and by joystic for excavating operation. When we do steering and excavating operation simultaneously, we feel so uncomfortable because we have to use handle and joystic simultaneously. Therefore, we need to develop eletro-joystic steering system instead of hydraulic-handle steering system. So we can improve driving convenience in industrial field. This paper analyze spool of steering wheel and joystic and drive open area diagram. As a result, we can know characteristics of each valve before developing new electro-joystic steering system for wheel-loader.

  • PDF

Dynamic analysis of an wheel loader manipulator by experimental data (실험결과를 이용한 휠로더 작업장치부의 동역학 해석)

  • Ko, Kyung-Eun;Kim, Heui-Wion;Bae, Jong-Gug;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.881-886
    • /
    • 2004
  • This paper presents the inverse dynamic analysis of the wheel loader manipulator based on the experimental data. A three dimensional rigid multi-body model of the wheel loader manipulator was built up. The inverse dynamic analysis for the typical operation mode was carried out by the ADAMS program. In order to verify the analysis result with the measured one, the hydraulic pressure and displacements of the cylinders were measured and the inverse dynamic analysis was carried out using experimental data. From the results of the analysis and measurement, it was concluded that the computational driving force showed good agreement with the measured one.

  • PDF

A Study on the Bucket Loading Characteristics for Wheel-loader Loading Automation (휠로더 굴착 자동화를 위한 버킷 부하특성 연구)

  • Seo, Dong-Kwan;Seo, Hyun-Jae;Kang, In-Pil;Kwon, Young-Min;Lee, Sang-Hoon;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1332-1340
    • /
    • 2009
  • The front end wheel loader is widely used for the loading of materials in mining and construction fields. It has repetitive digging, loading and dumping procedures. The bucket is subjected to large resistance force from the soil during scooping. We considered the soil reaction force characteristics from scooping procedure, the protection by overload and automatic scooping mode algorithm. The main topic of this paper is the analysis of the soil reaction force characteristics. The analysis of soil mechanics is carried out and the developed soil model is verified by experimental results from the simplified experimental equipment. A simplified model of the soil shape and bucket trajectory is used to determine the scooping direction based on an estimation of the resistance force applied on the bucket during the scooping motion. In the future, this model will be used for the generation of an appropriate path for the wheel loader automation.