• Title/Summary/Keyword: 휠베이스

Search Result 8, Processing Time 0.029 seconds

A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller (모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어)

  • Kim, Seung-Woo;Seo, Ki-Sung;Cho, Young-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

A Study on Characteristics of Driving Control of Crane (크레인의 구동제어 특성에 관한 연구)

  • 이형우;박찬훈;김두형;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.545-550
    • /
    • 2001
  • This paper studied on the lateral motion and yaw motion of the gantry crane that is used for the automated container terminal. Though several problems are occurred in driving of the gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operator. There are two types, cone and flat type in driving wheel shape. In cone type, the lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of two driving wheels are derived. Then, we investigate the driving characteristics of gantry crane. In this study, the proposed controller, based on Model Based Controller, is used to control the lateral displacement and yaw angle of the gantry crane. And the availability of the proposed controller is showed through the comparison with the result of the proposed controller and PD controller. The simulation results of the driving mechanism, using the Runge-Kutta Method that is one of the numerical analysis methods, are presented in this paper.

  • PDF

A Study on Structural Safety of Integrated Machine for Grinding Wheel Forming (연삭 휠 형상 복합가공시스템의 구조 안전성에 관한 연구)

  • Lee, Won-Suk;An, Beom-Sang;Kim, Jin-Hyeon;Lee, Jong-Chan;Woo, Bong-Geun;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • This study evaluated the structural safety of a heavy-duty integrated machine for grinding wheel forming. Structural analysis was performed to evaluate the structural safety of the base. The base was designed by dividing the single base and detachable base. The analysis conditions were applied to the own weight and the load of component parts. From the structural analysis results, although the stress of the detachable base was decreased, the amount of deformation was increased. If the deformation of the detachable base decreases, it is expected to be safer than the single base.

A Design of Vehicle for Mobile 3D Printer (이동형 3D 프린터를 위한 차량 설계)

  • Jun-Young Park;Ha-Yeon Kim;Seung-Hoon Baek;Min-Seok Kim;Seung-Dae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.177-184
    • /
    • 2023
  • In this paper, based on Arduino, a vehicle is installed at the bottom of the 3D printer so that Arduino controls the vehicle that can expand the moving space. A stepping motor was mounted on the front wheel of the vehicle and precisely controlled using a motor driver. As a result, when moving 5cm, 25cm, and 50cm, the mean value of error rate was 0.6%, 0.04%, and 0.02%, respectively, to enable accurate distance control.

Effect of Design variables of Rail Surface Measuring Device on Acoustic Roughness and Spectral Analysis (레일표면 측정장치의 설계변수가 음향조도 스펙트럼 분석에 미치는 영향)

  • Jeong, Wootae;Jeon, Seungwoo;Jeong, Dahae;Choi, Han Shin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.440-447
    • /
    • 2017
  • Spectrum level for the acoustic roughness of wheels and rail surface should be periodically maintained under the limitation of ISO to reduce rolling noise of railway vehicles. Thus, in maintaining railway track, displacement sensor-based measuring devices are broadly used to measure the surface roughness and to perform spectral analysis. However, these measuring devices cause unexpected measuring errors since the displacement sensors are fixed at moving platforms and the main frame produces pitching motion during measurement. To increase the accuracy of the measured values, this paper has investigated the effects of design variables such as wheel base, additional wheels, and elastic deformation of wheels on the surface roughness and acoustic roughness spectrum.

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Krein Space Robust Extended Kalman filter Design for Pose Estimation of Mobile Robots with Wheelbase Uncertainties (휠베이스에 불확실성을 갖는 이동로봇의 자세 추정을 위한 크라인 스페이스 강인 확장 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.433-436
    • /
    • 2003
  • The estimation of the position and the orientation for the mobile robot constitutes an important problem in mobile robot navigation. Although the odometry can be used to describe the motions of the mobile robots, there inherently exist the gaps between the real robots and the mathematical model, which may be caused by a number of error sources contaminating the encoder outputs. Hence, applying the standard extended Kalman filter for the nominal model is not supposed to give the satisfactory performance. As a solution to this problem, a new robust extended Kalman filter is proposed based on the Krein space approach. We consider the uncertain discrete time nonlinear model of the mobile robot that contains the uncertainties represented as sum quadratic constraints. The proposed robust filter has the merit of being constructed by the same recursive structure as the standard extended Kalman filter and can, therefore, be easily designed to effectively account for the uncertainties. The simulations will be given to verify the robustness against the parameter variation as veil as the reliable performance of the proposed robust filter.

  • PDF

A Study on Tracking Control of Omni-Directional Mobile Robot Using Fuzzy Multi-Layered Controller (퍼지 다층 제어기를 이용한 전방향 이동로봇의 추적제어에 관한 연구)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1786-1795
    • /
    • 2011
  • The trajectory control for omni-directional mobile robot is not easy. Especially, the tracking control which system uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy multi-layered algorithm. The fuzzy control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. It explains the architecture of a fuzzy adaptive controller using the robust property of a fuzzy controller. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system; related mathematical theorems and their proofs are also given. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.