• Title/Summary/Keyword: 훈련개선

Search Result 882, Processing Time 0.03 seconds

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.

A Ukulele Playing Intervention for Improving the Hand Function of Patients With Central Nervous System Damage: A TIMP Case Study (중추신경계 손상 성인 대상 손 기능 향상을 위한 우쿨렐레 활용 치료적 악기연주(TIMP) 사례)

  • Joo, Ye-Eun;Park, Jin-Kyoung
    • Journal of Music and Human Behavior
    • /
    • v.19 no.2
    • /
    • pp.81-103
    • /
    • 2022
  • The effects of therapeutic instrumental music performance (TIMP) using a ukulele were examined in adults with central nervous system damage and impaired hand functions. The participants were three adults with neurological damage who participated in 30-min sessions twice a week over 6 weeks. Changes in hand function was measured by the Box and Block Test (BBT), the 9-Hole Peg Test (9-HPT), and the Jebsen-Taylor Hand Function Test (JTHFT). Following the intervention, all three participants showed increases in the BBT and 9-HPT scores, indicating positive changes in fine motor coordination and dexterity. In terms of the JTHFT, all three participants showed increases in the "writing" and "card flipping" subtask scores, indicating that the intervention was effective in improving more coordinated finger movements. All participants reported the satisfaction with the intervention. They also pointed out that they were motivated to play the ukulele and that following the intervention used their affected hand more frequently in daily activities. These findings suggest that TIMP with a ukulele for patients with central nervous system damage can have positive effects on their functional hand movements and motivate these patients to practice their rehabilitation exercises.

A study on pollutant loads prediction using a convolution neural networks (합성곱 신경망을 이용한 오염부하량 예측에 관한 연구)

  • Song, Chul Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.444-444
    • /
    • 2021
  • 하천의 오염부하량 관리 계획은 지속적인 모니터링을 통한 자료 구축과 모형을 이용한 예측결과를 기반으로 수립된다. 하천의 모니터링과 예측 분석은 많은 예산과 인력 등이 필요하나, 정부의 담당 공무원 수는 극히 부족한 상황이 일반적이다. 이에 정부는 전문가에게 관련 용역을 의뢰하지만, 한국과 같이 지형이 복잡한 지역에서의 오염부하량 배출 특성은 각각 다르게 나타나기 때문에 많은 예산 소모가 발생 된다. 이를 개선하고자, 본 연구는 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 BOD 및 총인의 부하량 예측 모형을 개발하였다. 합성곱 신경망의 입력자료는 일반적으로 RGB (red, green, bule) 사진을 이용하는데, 이를 그래도 오염부하량 예측에 활용하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이에, 본 연구에서는 오염부하량이 수문학적 조건과 토지이용 등의 변수에 의해 결정된다는 인과관계를 만족시키고자 수문학적 속성이 내재된 수문학적 이미지를 합성곱 신경망의 훈련자료로 사용하였다. 수문학적 이미지는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는데, 여기서 각 grid의 수문학적 속성은 SCS 토양보존국(soil conservation service, SCS)에서 발표한 수문학적 토양피복형수 (curve number, CN)를 이용하여 산출한다. 합성곱 신경망의 구조는 2개의 Convolution Layer와 1개의 Pulling Layer가 5회 반복하는 구조로 설정하고, 1개의 Flatten Layer, 3개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 마지막으로 1개의 Dense Layer가 연결되는 구조로 설계하였다. 이와 함께, 각 층의 활성화 함수는 정규화 선형함수 (ReLu)로, 마지막 Dense Layer의 활성화 함수는 연속변수가 도출될 수 있도록 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 연구의 대상지역은 경기도 가평군 조종천 유역으로 선정하였고, 연구기간은 2010년 1월 1일부터 2019년 12월 31일까지로, 2010년부터 2016년까지의 자료는 모형의 학습에, 2017년부터 2019년까지의 자료는 모형의 성능평가에 활용하였다. 모형의 예측 성능은 모형효율계수 (NSE), 평균제곱근오차(RMSE) 및 평균절대백분율오차(MAPE)를 이용하여 평가하였다. 그 결과, BOD 부하량에 대한 NSE는 0.9, RMSE는 1031.1 kg/day, MAPE는 11.5%로 나타났으며, 총인 부하량에 대한 NSE는 0.9, RMSE는 53.6 kg/day, MAPE는 17.9%로 나타나 본 연구의 모형은 우수(good)한 것으로 판단하였다. 이에, 본 연구의 모형은 일반 ANN 모형을 이용한 선행연구와는 달리 2차원 공간정보를 반영하여 오염부하량 모의가 가능했으며, 제한적인 입력자료를 이용하여 간편한 모델링이 가능하다는 장점을 나타냈다. 이를 통해 정부의 물관리 정책을 위한 의사결정 및 부족한 물관리 분야의 행정력에 도움이 될 것으로 생각된다.

  • PDF

Employment Structure in Korea: Characteristics & Problems (우리나라 고용구조의 특징과 과제)

  • Jang, Keunho
    • Economic Analysis
    • /
    • v.25 no.1
    • /
    • pp.66-122
    • /
    • 2019
  • As the Korean economy grew, employment expanded steadily, with the number of economically active people increasing and the employment-to-population rate also increasing. However, the working age population started to decline in 2017, and the employment of women and young people has been sluggish. The proportion of non-salaried workers in Korea is much higher than in other OECD countries, and is also excessive, considering Korea's income levels. In addition, the proportion of non-regular workers and the proportion of workers employed at small companies are particularly high among salaried workers. In light of these characteristics of Korean employment, the urgent problems facing the employment structure can be summarized by the deepening dual structure of the labor market, the increase in youth unemployment, sluggish female employment figures, and an excessive share of self-employment. Overall, it is seen that labor market duality is the main structural factor of the employment problems in Korea. Therefore, in order to fundamentally address this employment problem, it is necessary to concentrate policy efforts on alleviating labor market duality.

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.

Substitutability of Noise Reduction Algorithm based Conventional Thresholding Technique to U-Net Model for Pancreas Segmentation (이자 분할을 위한 노이즈 제거 알고리즘 기반 기존 임계값 기법 대비 U-Net 모델의 대체 가능성)

  • Sewon Lim;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.663-670
    • /
    • 2023
  • In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.

Analysis of Research Trends in Deep Learning-Based Video Captioning (딥러닝 기반 비디오 캡셔닝의 연구동향 분석)

  • Lyu Zhi;Eunju Lee;Youngsoo Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2024
  • Video captioning technology, as a significant outcome of the integration between computer vision and natural language processing, has emerged as a key research direction in the field of artificial intelligence. This technology aims to achieve automatic understanding and language expression of video content, enabling computers to transform visual information in videos into textual form. This paper provides an initial analysis of the research trends in deep learning-based video captioning and categorizes them into four main groups: CNN-RNN-based Model, RNN-RNN-based Model, Multimodal-based Model, and Transformer-based Model, and explain the concept of each video captioning model. The features, pros and cons were discussed. This paper lists commonly used datasets and performance evaluation methods in the video captioning field. The dataset encompasses diverse domains and scenarios, offering extensive resources for the training and validation of video captioning models. The model performance evaluation method mentions major evaluation indicators and provides practical references for researchers to evaluate model performance from various angles. Finally, as future research tasks for video captioning, there are major challenges that need to be continuously improved, such as maintaining temporal consistency and accurate description of dynamic scenes, which increase the complexity in real-world applications, and new tasks that need to be studied are presented such as temporal relationship modeling and multimodal data integration.

Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry (Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용)

  • Pil Seung KWON
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.244-252
    • /
    • 2023
  • The timeliness and accuracy of test results are crucial factors for clinicians to decide and promptly administer effective and targeted antimicrobial therapy, especially in life-threatening infections or when vital organs and functions, such as sight, are at risk. Further research is needed to refine and optimize matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assays to obtain accurate and reliable results in the shortest time possible. MALDI-TOF MS-based bacterial identification focuses primarily on techniques for isolating and purifying pathogens from clinical samples, the expansion of spectral libraries, and the upgrading of software. As technology advances, many MALDI-based microbial identification databases and systems have been licensed and put into clinical use. Nevertheless, it is still necessary to develop MALDI-TOF MS-based antimicrobial-resistance analysis for comprehensive clinical microbiology characterization. The important applications of MALDI-TOF MS in clinical research include specific application categories, common analytes, main methods, limitations, and solutions. In order to utilize clinical microbiology laboratories, it is essential to secure expertise through education and training of clinical laboratory scientists, and database construction and experience must be maximized. In the future, MALDI-TOF mass spectrometry is expected to be applied in various fields through the use of more powerful databases.

Maxillary complete denture with posterior zirconia occlusion and mandibular implant support fixed prostheses in completely edentulous patients with orofacial dystonia (구강안면 근긴장이상을 가진 완전 무치악 환자에서 구치부 지르코니아 교합면을 갖는 상악 총의치와 하악 임플란트 지지 고정성 보철물의 수복)

  • Jong-Min Seo;Chang-Mo Jeong;So-Hyoun Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.237-249
    • /
    • 2023
  • Orofacial dystonia is a neuromotor disorder that causes irregular or repetitive movements of the face, lips, tongue, and jaw involuntarily, also called tic disorder. Edentulous patients with these symptoms experience functional and aesthetic problems, including difficulty using complete dentures, speech and swallowing difficulties, and orofacial pain. In this case, for a patient with orofacial dystonia who experienced complete edentulism at a relatively young age, restorative treatment was performed with a maxillary complete denture with bilateral posterior zirconia occlusal surfaces and a mandibular implant-supported fixed prosthesis, and continuous smile training was performed. The aim was to improve the aesthetics of facial muscles. As a result of the treatment, the patient was very satisfied with not only improved chewing function and aesthetics, but also regained psychological stability and was able to lead a normal daily life, so we would like to report this.

Evaluation method for interoperability of weapon systems applying natural language processing techniques (자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법)

  • Yong-Gyun Kim;Dong-Hyen Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.8-17
    • /
    • 2023
  • The current weapon system is operated as a complex weapon system with various standards and protocols applied, so there is a risk of failure in smooth information exchange during combined and joint operations on the battlefield. The interoperability of weapon systems to carry out precise strikes on key targets through rapid situational judgment between weapon systems is a key element in the conduct of war. Since the Korean military went into service, there has been a need to change the configuration and improve performance of a large number of software and hardware, but there is no verification system for the impact on interoperability, and there are no related test tools and facilities. In addition, during combined and joint training, errors frequently occur during use after arbitrarily changing the detailed operation method and software of the weapon/power support system. Therefore, periodic verification of interoperability between weapon systems is necessary. To solve this problem, rather than having people schedule an evaluation period and conduct the evaluation once, AI should continuously evaluate the interoperability between weapons and power support systems 24 hours a day to advance warfighting capabilities. To solve these problems, To this end, preliminary research was conducted to improve defense interoperability capabilities by applying natural language processing techniques (①Word2Vec model, ②FastText model, ③Swivel model) (using published algorithms and source code). Based on the results of this experiment, we would like to present a methodology (automated evaluation of interoperability requirements evaluation / level measurement through natural language processing model) to implement an automated defense interoperability evaluation tool without relying on humans.

  • PDF