• Title/Summary/Keyword: 후족부 착지

Search Result 2, Processing Time 0.014 seconds

Finite Element Analysis of Impact Characteristics of Shoes-Leg Coupled Model to landing Mode (착지모드에 따른 신발-족 연계모델의 충격특성 유한요소 해석)

  • Ryu Sung-Heon;Kim Sung-Ho;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1191-1198
    • /
    • 2005
  • This paper is concerned with the numerical investigation of the landing impact characteristics of sport shoes to the landing mode. In most court sport activities, jumping and landing are fundamental motions, and the landing motion is largely composed of forefoot and rearfoot landing modes. Since the landing impact may, but frequently, lead to unexpected injuries of players, the investigation of its characteristics and the sport shoes design for reducing it are of a great importance. To investigate the landing impact characteristics to the landing mode, we construct a shoes-leg coupled model and carry out the numerical simulation by an explicit finite element method.

The Effect of the Plantar Pressure on Dynamic Balance by Fatigue of Leg in the Subjects with Functional Ankle Instability (기능적 발목 불안정성시 하지 근피로에 의한 동적균형이 족저압에 미치는 영향)

  • Kim, Ho-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.734-742
    • /
    • 2016
  • Purpose : The present study was aimed at investigating the plantar pressure on dynamic balance of subjects with functional ankle instability following fatigue of lower leg. Methods : The subjects(30 university students) were divided into 2 groups ; functional ankle instability group(7males and 7females) and ankle stable group(9males & 7females) who could evaluate questionnaire. All the participants were evaluated muscle fatigue of lower leg by Biodex system III and distribution of plantar pressure by Zebris FDM-S system, The dynamic balance was tested by single-leg jump landing. This study were to measure of plantar pressure on dynamic balance with the difference between FAIG and control group following muscle fatigue. Results : In functional ankle instability group(FAIG), the post-fatigue was significantly higher than pre-fatigue in forefoot(p2,p3,p4) of plantar pressure on dynamic balance(p<0.05). The FAIG was significantly higher than the ASG in forefoot(p2, p3, p4) & lat midfoot(p6) of plantar pressure after fatigue in dynamic balance(p<0.05). The FAIG was significantly longer than the ASG in anteroposterior(AP) & mediolateral(ML) distance on center of pressure(CoP) after fatigue in dynamic balance(p<0.05). Conclusion : This study showed that FAIG were effected plantar pressure and center of pressure(CoP) by dynamic balance following muscle fatigue. Further study is needed to measure various age & work with ankle instability for clinical application.