• 제목/요약/키워드: 후류 천이

검색결과 26건 처리시간 0.025초

평판 경계층과 후류와의 상호관계에 관한 연구; 평균속도장 (An Experimental Study of Mutual Relation between Wake and Boundary Layer of a Flat Plate; Mean Velocity Field)

  • 김동하;장조원
    • 한국항공우주학회지
    • /
    • 제32권10호
    • /
    • pp.1-11
    • /
    • 2004
  • 평판의 근접 후류에서 상류 경계층의 영향을 조사하기 위한 실험적 연구가 수행되었다. 트리핑 와이어(tripping wire)의 여러 부착 위치가 경계층의 유동조건을 유발시키기 위하여 선택되었다. 평판 앞전에서부터 0.98C 위치에서의 층류, 천이, 난류경계층이 대칭, 비대칭 후류의 발달과정을 조사하기 위하여 부과되었다. X형태의 열선 프로브(55P61)를 이용한 측정은 근접 후류의 8위치에서 수행되었고, 측정된 평균속도분포는 기존의 후류 상사변수로 무차원화 되어 제시되었다. 대칭 후류는 후류의 중앙부분에서 기존의 상사곡선과 일치하지만, 비대칭 후류는 측정된 범위에서 기존의 상사 곡선과 일치하지 않았다.

주기적 통과 후류의 방향과 주파수가 익형 위 비정상 천이경계층에 미치는 영향 (Effects of Wake-Passing Orientation and Frequency on Unsteady Boundary Layer Transition on an Airfoil)

  • 강신형;박태춘;전우평
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.685-694
    • /
    • 2002
  • Effects of wake-passing orientation and frequency on the wake-induced boundary layer transition on a NACA0012 airfoil are investigated. The wakes are generated by rotating cylinders clockwise (CW) and counterclockwise (CCW) around the airfoil. Time- and phase-averaged streamwise mean velocities and turbulent fluctuations are measured with a single hot-wire probe. Wall skin frictions are estimated by the Computational Preston Tube Method (CPM). The pressure distribution on the airfoil is different according to the wake-passing orientation and frequency. Turbulent patches are generated in the laminar boundary layer due to the passing wake and the boundary layer becomes temporarily transitional. The transition process is significantly affected by the pressure gradient and the turbulent patches. For the receding wake, the turbulent patches propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. As the frequency increases, onset location of transition moles upstream and the boundary layer near the trailing edge becomes more transitional.

주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향 (The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil)

  • 정하승;이준식;강신형
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

PIV 계측에 의한 실린더 근접후류에서 2차 와류의 특성 연구 (A Study on Characteristics of Secondary Vortices in the Near Wake of a Circular Cylinder by PIV Measurement)

  • 성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.404-409
    • /
    • 2000
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder where the Taylor hypothesis does not hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV. For the analysis in a moving frame of reference, the convection velocity of the Karman vortices is evaluated from the trajectory of vortex center which is defined as the centroid of the vorticity field. Then, a saddle point is obtained by applying the critical point theory. Science the distributions of fluctuating Reynolds stresses defined by triple-decomposition are closely related with the existence of secondary vortices. the physical meaning of them is explained in conjunction with vortex center and saddle point trajectories. Finally, the temporal evolution of streamwise vortex is also discussed.

  • PDF

난류 촉진기 주위 천이 유동의 대형 와 모사를 위한 격자 테스트 (Grid Tests for Large Eddy Simulation of Transitional Flows around Turbulence Stimulators)

  • 이상봉;박동우;백광준
    • 해양환경안전학회지
    • /
    • 제23권1호
    • /
    • pp.112-121
    • /
    • 2017
  • 평판에 설치된 스터드 주위의 천이 유동에 있어 격자 크기의 영향을 알기 위해 대형 와 모사를 수행하였다. 스터드에서 야기되는 주 유동 방향의 와 구조가 스터드 후류의 천이에 미치는 영향이 매우 크기 때문에 주 유동 방향, 벽면 수직 방향 그리고 횡 방향으로 격자 크기를 ${\sqrt{2}}$ 배씩 증가시키거나 감소시키면서 스터드 후류에서 주 유동 방향의 와도를 비교하였다. 그 결과 스터드 후류에서 발달하는 주 유동 방향의 와도는 횡 방향 격자 크기에 매우 큰 영향을 받는 것을 알 수 있었으며, 이러한 결과를 바탕으로 ${\Delta}x^+{_{min}}=7.6$, ${\Delta}x^+{_{max}}=41$, ${\Delta}y^+{_{wall}}=0.25$ and ${\Delta}z^+=7.6$의 격자 크기를 결정하였다. 이러한 격자 구성에 있어 모든 방향으로 격자 크기를 동시에 ${\sqrt{2}}$ 배씩 증가시키거나 감소시키면서 스터드에 작용하는 힘의 변화를 비교하여 격자 검증을 실시한 결과 평균 압력 계수와 항력 계수의 비보정 불확실성이 각각 21.6 %와 2.8 % 정도로 추정되었으며, 보정 불확실성은 각각 2 %와 0.3 %로 추정되었다.

주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(I) -시간평균된 유동 특성- (Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (I) -A Time-Averaged Characteristic-)

  • 박태춘;전우평;강신형
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.776-785
    • /
    • 2001
  • Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2$\times$10(sup)5 and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase-and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer.

자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이 (Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence)

  • 박태춘;전우평;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

A-mode 불안정성 영역에서 교란유동장에 놓인 원형실린더 후류의 천이지연과 유동공진의 발생 (Suppression of Wake Transition and Occurrence of Lock-on Downstream of a Circular Cylinder in a Perturbed Flow in the A-mode Instability Regime)

  • 김수현;배종헌;유정열
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.702-710
    • /
    • 2007
  • Direct numerical simulation (DNS) is performed to investigate suppressed wake transition and occurrence of lock-on in the wake of a circular cylinder disturbed by sinusoidal perturbation at the Reynolds number of 220 (A-mode instability regime). The sinusoidal perturbation, of which the frequency is near twice the natural shedding frequency, is superimposed on the free stream velocity. It is shown that the wake transition behind the circular cylinder can be suppressed due to the perturbation of the free stream velocity. This change causes a jump in the Strouhal number from the value corresponding to A-mode instability regime to the value corresponding to retarded wake transition regime (extrapolated from laminar shedding regime) in the Strouhal-Reynolds number relationship. As a result, vortex shedding frequency is locked on the perturbation frequency depending not on the natural shedding frequency but on the modified shedding frequency.

회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석 (Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes)

  • 김현정;오세원;김성준;최익현;김태욱;이상욱;김진원;이정진;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석 (Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes)

  • 김현정;김동현;오세원;김성준;최익현;김태욱;이상욱;김진원;이정진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF