• 제목/요약/키워드: 효소 바이오 연료전지

검색결과 4건 처리시간 0.02초

페로신카르복시산을 이용한 글루코스 산화효소의 표면개질에 의한 바이오 연료전지 성능향상 (Performance Enhancement of Biofuel Cell by Surface Modification of Glucose Oxidase using Ferrocene Carboxylic acid)

  • 지정연;크리스트와르다나 마셀리너스;정용진;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.526-532
    • /
    • 2016
  • In this study, we synthesized a mediator immobilized biocatalyst([FCA/GOx]/PEI/CNT) by surface modification using ferrocene carboxylic acid(FCA), and evaluated its performance as anode catalyst for biofuel cell. Through the application of FCA on glucose oxidase (GOx), the free amine groups on the lysine residue of GOx surface reacted with carboxylic acid of FCA and make amide bond between GOx and FCA. As the result of that, the electron transfer of catalyst was increased up to 1.91 times($0.468mA{\cdot}cm^{-2}$) than the catalyst without surface modification (GOx/PEI/CNT), and high maxium power density of $1.79mA{\cdot}cm^{-2}$ was gained.

벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가 (Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst)

  • 안연주;정용진;권용재
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.258-263
    • /
    • 2017
  • 본 연구에서는 글루코스 산화효소(glucose oxidase, GOx), 고분자인 폴리에틸렌이민(polyethyleneimine, PEI), 카본나노튜브(carbon nanotube, CNT)와 벤조퀴논(benzoquinone, BQ)을 이용하여 글루코스 바이오연료전지를 위한 바이오 촉매를 합성하였다. 이를 위해, 지지체인 PEI/CNT 복합체에 BQ를 정전기적 인력을 통해 물리적으로 포집한 뒤, GOx를 담지시켜 합성하였다. 이는 기존에 전자 매개체로서 전해질에 풀어서 사용했던 BQ를 전해질이 아닌 촉매 내에 포집하여 촉매를 구성하였다는 개선점이 크며, 그 결과, BQ가 포집되지 않은 촉매 대비, 1.9배 상승한 $34.16{\mu}A/cm^2$의 최대전류밀도를 얻음을 통해 촉매활성이 개선되었음을 증명하였고, 바이오연료전지의 산화극 촉매로 이용 시, BQ가 포집되지 않은 촉매를 이용한 바이오연료전지에 비해 1.2배 상승한 $0.91mW/cm^2$의 최대출력밀도를 얻었다. 이를 통해 바이오연료전지의 산화극을 위한 촉매로서 GOx와 함께 담지된 매개체 BQ를 포함한 촉매 제조 가능성을 확인하였다.

글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화 (Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell)

  • 안연주;정용진;권용재
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.693-697
    • /
    • 2016
  • 본 연구에서는 탄소나노튜브(CNT), 글루코스 산화효소(Glucose oxidase, GOx) 및 다양한 분자량의 가지달린 폴리에틸렌이민(Polyethyleneimine, branched, bPEI)을 물리적으로 결합하여 GOx/PEI/CNT 구조를 제조한 뒤, 가교제인 테레프타랄데하이드(Terephthalaldehyde, TPA)와 알돌축합반응을 통해 TPA/[GOx/bPEI/CNT] 구조의 촉매를 합성하였으며, 각각의 전기화학적 특성 및 장기안정성 등을 평가하였다. GOx/PEI/CNT의 경우, PEI의 분자량의 증가에 따라 유의한 차이를 확인할 수 없었으나, TPA 도입한 TPA/[GOx/bPEI/CNT]는 PEI 분자의 증가에 따라 전자전달 및 장기안정성은 향상되며 글루코스의 물질전달은 감소함을 확인하였다. 또한 효소연료전지 음극 촉매로서의 최적 bPEI 분자량을 확인한 결과, 750 k PEI를 이용한 촉매(TPA/[GOx/bPEI-750k/CNT]에서 최고의 최대전력밀도($0.995mW{\cdot}cm^{-2}$)를 얻을 수 있음을 확인하였다.

Pt-Ru@TiO2-H 나노구조체촉매의 합성 및 전기화학적 특성평가 (Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites)

  • 이인호;권해두;최성호
    • 분석과학
    • /
    • 제26권1호
    • /
    • pp.42-50
    • /
    • 2013
  • 이 논문은 센서 및 연료전지에 사용할 수 있는 $Pt-Ru@TiO_2-H$ 나노구조체촉매의 제조 및 전기화학적 촉매의 특성에 대한 것이다. 이 $Pt-Ru@TiO_2-H$ 나노구조체촉매는 주형제인 폴리스틸렌볼(PSB)을 제조하고, 이 주형제의 표면에 졸-겔 반응을 통해 $TiO_2$를 코팅한 후, $Pt^{4+}$$Ru^{3+}$의 환원에 의해 제조하였다. 제조된, $Pt-Ru@TiO_2-H$ 나노구조체촉매는 전자투과현미경(TEM), X-선 회절(XRD)와 원소분석에 의해 특성평가 하였고, $Pt-Ru@TiO_2-H$의 전기화학적 촉매특성은 에탄올, 메탄올, 도파민, 아스크로브 산, 프로말린과 글루코오즈의 산화-환원 능력에 의해 평가 하였다. 이 $Pt-Ru@TiO_2-H$ 나노구조체촉매는 바이오분자에 대해 전기화학적촉매 특성을 나타내어, 연료전지 전극 또는 비효소바이오센서에 사용 될 것으로 기대된다.