• Title/Summary/Keyword: 효도

Search Result 35,695, Processing Time 0.07 seconds

Studies on the Productivity of Individual Leaf Blade of Paddy Rice (수도의엽신별 생육효과에 관한 연구)

  • Dong-Sam Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.1-27
    • /
    • 1975
  • Experiment I: A field experiment was conducted in an attempt to find the effect of top-dressing at heading time in different levels of nitrogen application and of different positioned leaf blades formed by the treatment of leaf defoliation at heading time on the ripening and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill and average number of grains per ear in different levels of nitrogen application were increased as the amount of nitrogen applied was increased. while the rate of ripened grains the yield of rough rice and the weight of 1, 000 kernels of brown rice were decreased respectively as the amount of nitrogen applied was increased. 2. The rate of ripened grains and the weight of 1.000 kernels of brown rice in different levels of nitrogen, top-dressing at heading time were larger than those in control and increased. The yield of rough rice although statistically significant differences were not recognized, were numerically increased. 3. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf-defoliation became larger. 4. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different combinations of number of remained leaves positioned differently, formed the order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf blade was remained, and were increased as the positions of leaves were higher when two leaf blades. were, remained. 5. In case of decrease in the number of leaf blades positioned differently, by the treatment of leaf. defoliation, rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling were increased as the area of remained leaves became larger and the nitrogen content of a leaf blade was increased. 6. There was a tendency that the increase in the amount of fertilizer application made the rate of ripened grains and the weight of 1, 000 kernels of brown rice reduced in any number of remained leaf blades, but the application of top-dressing at heading. time resulted in the reverse tendency. The yield of rough rice showed a tendency to be increased as the amount of basal dressing and top-dressing increased and for the application of top-dressing at heading time, the yield of rough rice was less at the smaller number of those. 7. The productivity effect of the rate of ripened grains and the yield of brown rice covered by leaf blades was more than 50 per cent and that of the. weight of 1, 000 kernels of brown rice was not more than 1.0 percent. As the amount of nitrogen application increased the. effect of leaf blades on the rate of ripened. grains and the weight of 1, 000 kernels of brown rice was increased. The effect of leaf blades on the weight of brown rice was increased as the amount of basal dressing-application, but the effect was decreased as the amount of top-dressing at heading time increased, 8. The productivity effects of different positioned leaf blades on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice were in order of $L_1(flag leaf)>L_2>L_3>L_4$ the productivity effects of $L_1$ and $L_2$ had a tendency to be increased as the amount of nitrogen applied was increased. Experiment II: A field experiment was done in order to disclose the effect of the time of nitrogen application on yield component and the effect of different positioned leaves formed by leaf defoliation at heading time on the rate of ripened grains and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill was increased in the treatment of nitrogen application from basal dressing to 22 days before heading and in the treatment of application distributed weekly. Number of grains was increased in the treatment of nitrogen application from 36 days to 15 days before heading. The rate of ripened grains was, lower in the treatment of nitrogen application from top-dressing to 15 days before heading than in that of non-application, was higher in the treatment of nitrogen application within 8 days before heading, and was the lowest in that of application 29 days before heading. The yield of rough rice was the highest in the treatment of nitrogen application from 29 days to 22 days before heading. The weight of 1, 000 kernels of brown rice was a little high in the treatment of application from 29 days to 8 days before heading. 2. The rate of ripened grains the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf defoliation got larger and there were highly significant differences among treatments. There was also a recognized interaction between the time of nitrogen application and leaf defoliation. 3. In relation to the rate of ripened grains, the weight of 1. 000 kernels of brown rice and the rate of hulling in different numbers of remained leaves positioned differently and their combinations, the yield components were in order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf was remained, which indicated that the components were increased as the leaf position got higher. When two laves were remained, the rate of ripened grains, the yield of rough rice and rate of hulling were high in case of the combinations of upper positioned leaves, and the increase in the weight of 1, 000 kernels of brown rice appeared to be affected most]y by flag leaf. When three leaf blades were remained similarly the components were increased with the combination of upper positioned leaf blades. 4. In case of decreased different positioned leaf blades by treatment of leaf defoliation, there was a significant positive regression between the leaf area, the dry matter weight of leaf blades and the nitrogen contents of leaf blades, and rate of ripened grains and the yield of rough rice, but there was no constant tendency between the former components and the weight of 1. 000 kernels of brown rice. 5. The closer the time of fertilizer application to heading time, the more the rate of ripened grains and the weight of 1, 000 kernels was decreased by defoliation, and the less were the remained leaf blades, the more remarkable was the tendency. The rate of ripened grains and the weight of 1. 000 kernels was increased by the top-dressing after heading time as the number of remained leaf blades. When the number of remained leaf blades was small the yield of rough rice was increased as the time of fertilizer application was closer to heading time. 6. Discussing the productivity effects of different organs in different times of nitrogen application, the productivity effect of a leaf blade on the rate of ripened grains was higher as the time of nitrogen application got later, and in the treatment of non-fertilization the productivity effect of a leaf blade and that of culm were the same. In the productivity effect on the yield of brown rice, the effect of culm covered more than 50 percent independently on the time of nitrogen application, and the tendency was larger in the treatment of non-fertilizer. The productivity effect of culm on the weight of 1. 000 kernels of brown rice was more than 90 percent, and the productivity effect of a leaf blade was increased as the time of application got later. 7. The productivity effect of a leaf blade in different positions on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice had a tendency to be increased as the time of application got later and as the position of leaf blades got higher. In the treatment of weekly application through the entire growing period, the rate of ripened grains and the yield of rough rice were affected by flag leaf and the second leaf at the same level, the but the weight of 1, 000 kernels of brown rice was affected by flag leaf with more than 60 percent of the yield of total leaves.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF

Studies on the Foliar Application of Urea as Nitrogen Source of Rice Plant Nutrition (요소엽면살포(尿素葉面撒布)에 따른 수도(水稻)의 질소영양(窒素營養)에 관(關)한 연구(硏究))

  • Cho, Seoung-Jin
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.125-147
    • /
    • 1968
  • This experiment was carried out as a part of the studies on reasonable application of nitrogen in rice plant to determine: (I) Nitrogen absorption. and rooting of rice seedlings as affected by urea foliar application at late seedling stage (II) Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice (III) Effect of foliar application of urea and its time during the stage of ear formation on yield of rice plant. Results obtained are summarized as follows. Exp.I: Nitrogen absorption and rooting of rice seedlings as affected be urea foliar application at late seedling stage. 1 : The foliar application of urea plots$(T_{1},T_2)$ snowed mare N-content than non-urea foliar application plot(T0) at lane seedling stage, being significant among treatments and foliar application of urea seemed more effective in increasing the N-content of seedlings. and promoted root settlement and early growth alter the transplanting. 2 : The carbon contents of the plants of $T_1$, and $T_2$ at late seedling stage increased than T0, and the carbon contents. of $T_1$ and $T_2$ plots became higher in amount in proportion to the nitrogen absorption as compared with those of $T_0$. 3 : C/N ratio appeared significant among soil application plots($N_1, \;N_2$) and foliar application of urea plots ($T_1$, $T_2$ and $T_0$). C/N ratio was lower in case of increased amount of nitrogen. The higher contents of nitrogen and carbon and lower C/N ratio resulted in the increment of root numbers and root lengths. Exp.II: Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice. 1 : There was a highly significant decrease in the maturing rate by severe leaf prunning. In the mean time, significant increase in maturing rate was observed with urea foliar application and it was found the more frequent application the more effective for higher maturing rate with a moderate significance. A correlationship between the level of prunning and maturing rate was enumerated to 0.961 of correlation coefficient, which indicated an increased maturing rate by the increased number of remaining leaves. 2 : The 1.000 grain weight, grain weight and hulled rice yield increased by leaf prunning in order (plot a$A_1$, $A_3$, $A_2$ and $A_0$ were 89.8%, 89.4%, 87.8% and 87.5% respectively, showing the highest of rate in $A_1$ and $A_3$ in methods of ear fertilization and being highly significant between its treatment. 3 : 1000 grain weights were highly significant between time of application, showing a tendency of increase of weights with the time lagging until days before earings as that of maturing rates. High significance was recognized between methods of ear fertilization, showing the highest in $A_2$ 23.18 gr. 4 : Yields per $3.3m^2$ were not significant between time of ear fertilization, whereas were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.486 kg, 1.491 kg, 1.381 kg and 1.328 kg, respectively, showing the highest in $A_1$ and $A_3$. 5 : Hulling ratios showed significant different between time of ear fertilization, showing the highest in $T_2$, whereas those of methods of ear fertilization were highly significant between its treatment, Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 84.72%, 84.06%, 83.29%, and 82.56% respectively, showing the highest m $A_2$ and $A_3$ among others. 6 : Yields of hulled rice per $3.3m^2$ showed significant different between time of ear fertilization, showing the highest in $T_1$ 1.192 kg. Whereas, those were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.259 kg, 1.254 kg, 1.149 kg and 1.095 kg, respectively, showing the highest in $A_1$ and $A_2$. 7 : Contents of nitrogen on rice plant increased in case of nitrogen application as ear fertilizer and showed that the case of urea foliar application was more effective than that of soil application, showing the increased nitrogen content of rice plant was accompanied by carbon content.

  • PDF

Showing Filial Piety: Ancestral Burial Ground on the Inwangsan Mountain at the National Museum of Korea (과시된 효심: 국립중앙박물관 소장 <인왕선영도(仁旺先塋圖)> 연구)

  • Lee, Jaeho
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.123-154
    • /
    • 2019
  • Ancestral Burial Ground on the Inwangsan Mountain is a ten-panel folding screen with images and postscripts. Commissioned by Bak Gyeong-bin (dates unknown), this screen was painted by Jo Jung-muk (1820-after 1894) in 1868. The postscripts were written by Hong Seon-ju (dates unknown). The National Museum of Korea restored this painting, which had been housed in the museum on separate sheets, to its original folding screen format. The museum also opened the screen to the public for the first time at the special exhibition Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea held from July 23 to September 22, 2019. Ancestral Burial Ground on the Inwangsan Mountain depicts real scenery on the western slopes of Inwangsan Mountain spanning present-day Hongje-dong and Hongeun-dong in Seodaemun-gu, Seoul. In the distance, the Bukhansan Mountain ridges are illustrated. The painting also bears place names, including Inwangsan Mountain, Chumohyeon Hill, Hongjewon Inn, Samgaksan Mountain, Daenammun Gate, and Mireukdang Hall. The names and depictions of these places show similarities to those found on late Joseon maps. Jo Jung-muk is thought to have studied the geographical information marked on maps so as to illustrate a broad landscape in this painting. Field trips to the real scenery depicted in the painting have revealed that Jo exaggerated or omitted natural features and blended and arranged them into a row for the purposes of the horizontal picture plane. Jo Jung-muk was a painter proficient at drawing conventional landscapes in the style of the Southern School of Chinese painting. Details in Ancestral Burial Ground on the Inwangsan Mountain reflect the painting style of the School of Four Wangs. Jo also applied a more decorative style to some areas. The nineteenth-century court painters of the Dohwaseo(Royal Bureau of Painting), including Jo, employed such decorative painting styles by drawing houses based on painting manuals, applying dots formed like sprinkled black pepper to depict mounds of earth and illustrating flowers by dotted thick pigment. Moreover, Ancestral Burial Ground on the Inwangsan Mountain shows the individualistic style of Jeong Seon(1676~1759) in the rocks drawn with sweeping brushstrokes in dark ink, the massiveness of the mountain terrain, and the pine trees simply depicted using horizontal brushstrokes. Jo Jung-muk is presumed to have borrowed the authority and styles of Jeong Seon, who was well-known for his real scenery landscapes of Inwangsan Mountain. Nonetheless, the painting lacks an spontaneous sense of space and fails in conveying an impression of actual sites. Additionally, the excessively grand screen does not allow Jo Jung-muk to fully express his own style. In Ancestral Burial Ground on the Inwangsan Mountain, the texts of the postscripts nicely correspond to the images depicted. Their contents can be divided into six parts: (1) the occupant of the tomb and the reason for its relocation; (2) the location and geomancy of the tomb; (3) memorial services held at the tomb and mysterious responses received during the memorial services; (4) cooperation among villagers to manage the tomb; (5) the filial piety of Bak Gyeong-bin, who commissioned the painting and guarded the tomb; and (6) significance of the postscripts. The second part in particular is faithfully depicted in the painting since it can easily be visualized. According to the fifth part revealing the motive for the production of the painting, the commissioner Bak Gyeongbin was satisfied with the painting, stating that "it appears impeccable and is just as if the tomb were newly built." The composition of the natural features in a row as if explaining each one lacks painterly beauty, but it does succeed in providing information on the geomantic topography of the gravesite. A fair number of the existing depictions of gravesites are woodblock prints of family gravesites produced after the eighteenth century. Most of these are included in genealogical records and anthologies. According to sixteenth- and seventeenth-century historical records, hanging scrolls of family gravesites served as objects of worship. Bowing in front of these paintings was considered a substitute ritual when descendants could not physically be present to maintain their parents' or other ancestors' tombs. Han Hyo-won (1468-1534) and Jo Sil-gul (1591-1658) commissioned the production of family burial ground paintings and asked distinguished figures of the time to write a preface for the paintings, thus showing off their filial piety. Such examples are considered precedents for Ancestral Burial Ground on the Inwangsan Mountain. Hermitage of the Recluse Seokjeong in a private collection and Old Villa in Hwagae County at the National Museum of Korea are not paintings of family gravesites. However, they serve as references for seventeenth-century paintings depicting family gravesites in that they are hanging scrolls in the style of the paintings of literary gatherings and they illustrate geomancy. As an object of worship, Ancestral Burial Ground on the Inwangsan Mountain recalls a portrait. As indicated in the postscripts, the painting made Bak Gyeong-bin "feel like hearing his father's cough and seeing his attitudes and behaviors with my eyes." The fable of Xu Xiaosu, who gazed at the portrait of his father day and night, is reflected in this gravesite painting evoking a deceased parent. It is still unclear why Bak Gyeong-bin commissioned Ancestral Burial Ground on the Inwangsan Mountain to be produced as a real scenery landscape in the folding screen format rather than a hanging scroll or woodblock print, the conventional formats for a family gravesite paintings. In the nineteenth century, commoners came to produce numerous folding screens for use during the four rites of coming of age, marriage, burial, and ancestral rituals. However, they did not always use the screens in accordance with the nature of these rites. In the Ancestral Burial Ground on the Inwangsan Mountain, the real scenery landscape appears to have been emphasized more than the image of the gravesite in order to allow the screen to be applied during different rituals or for use to decorate space. The burial mound, which should be the essence of Ancestral Burial Ground on the Inwangsan Mountain, might have been obscured in order to hide its violation of the prohibition on the construction of tombs on the four mountains around the capital. At the western foot of Inwangsan Mountain, which was illustrated in this painting, the construction of tombs was forbidden. In 1832, a tomb discovered illegally built on the forbidden area was immediately dug up and the related people were severely punished. This indicates that the prohibition was effective until the mid-nineteenth century. The postscripts on the Ancestral Burial Ground on the Inwangsan Mountain document in detail Bak Gyeong-bin's efforts to obtain the land as a burial site. The help and connivance of villagers were necessary to use the burial site, probably because constructing tombs within the prohibited area was a burden on the family and villagers. Seokpajeong Pavilion by Yi Han-cheol (1808~1880), currently housed at the Los Angeles County Museum of Art, is another real scenery landscape in the format of a folding screen that is contemporaneous and comparable with Ancestral Burial Ground on the Inwangsan Mountain. In 1861 when Seokpajeong Pavilion was created, both Yi Han-cheol and Jo Jung-muk participated in the production of a portrait of King Cheoljong. Thus, it is highly probable that Jo Jung-muk may have observed the painting process of Yi's Seokpajeong Pavilion. A few years later, when Jo Jungmuk was commissioned to produce Ancestral Burial Ground on the Inwangsan Mountain, his experience with the impressive real scenery landscape of the Seokpajeong Pavilion screen could have been reflected in his work. The difference in the painting style between these two paintings is presumed to be a result of the tastes and purposes of the commissioners. Since Ancestral Burial Ground on the Inwangsan Mountain contains the multilayered structure of a real scenery landscape and family gravesite, it seems to have been perceived in myriad different ways depending on the viewer's level of knowledge, closeness to the commissioner, or viewing time. In the postscripts to the painting, the name and nickname of the tomb occupant as well as the place of his surname are not recorded. He is simply referred to as "Mister Bak." Biographical information about the commissioner Bak Gyeong-bin is also unavailable. However, given that his family did not enter government service, he is thought to have been a person of low standing who could not become a member of the ruling elite despite financial wherewithal. Moreover, it is hard to perceive Hong Seon-ju, who wrote the postscripts, as a member of the nobility. He might have been a low-level administrative official who belonged to the Gyeongajeon, as documented in the Seungjeongwon ilgi (Daily Records of Royal Secretariat of the Joseon Dynasty). Bak Gyeong-bin is presumed to have moved the tomb of his father to a propitious site and commissioned Ancestral Burial Ground on the Inwangsan Mountain to stress his filial piety, a conservative value, out of his desire to enter the upper class. However, Ancestral Burial Ground on the Inwangsan Mountain failed to live up to its original purpose and ended up as a contradictory image due to its multiple applications and the concern over the exposure of the violation of the prohibition on the construction of tombs on the prohibited area. Forty-seven years after its production, this screen became a part of the collection at the Royal Yi Household Museum with each panel being separated. This suggests that Bak Gyeong-bin's dream of bringing fortune and raising his family's social status by selecting a propitious gravesite did not come true.