• Title/Summary/Keyword: 횡풍

Search Result 12, Processing Time 0.03 seconds

Risk Analysis of Travelling Vehicles by Cross Wind (횡풍에 의한 주행 차량 위험도 해석)

  • Lee, Il-Keun;Jo, Byung-Wan
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.139-146
    • /
    • 2011
  • Travelling vehicles on roads may slip or overturn due to strong cross wind. This paper presents the path deviation equation and the overturning equation of vehicle, and the process of evaluating the cross wind risk. Case studies for cars and trucks are carried out. It explains the mechanism why the deviation occurs according to the types of vehicles. It shall help to prepare the measures for reducing the risk of travelling vehicles in high wind speeds.

A Study on Rescu Technique and Safe Tow of Damaged Ship(4) - Dynamic Stability of Damaged Ship in Beam Wind and Waves - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구(4) - 손상된 선박의 횡풍.횡풍중에서의 동적 안전성 -)

  • 손경호;이상갑;최경식;김용기
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.27-36
    • /
    • 1998
  • This paper presents a brief outline of dynamic stability of damaged ship in rough, beam wind and waves. The one degree-of-freedom, linear roll equation is adopted with the effects of damage fluid and external forces, but without the effect of sloshing. We evaluate the dynamic stability in terms of capizing probability based on energy balance mechanics and risk analysis , the method of which was proposed by Umeda [2] to the high speed crafts. As a result, we can predict the dynamic stability quantitatively according to sea state , operating and damage conditions.

  • PDF

Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind (횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계)

  • Lim, Hyeongho;Joa, Eunhyek;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Dynamic Charncteristics for Laternl Strong Wind on Bimodal Tram (바이모달 트램의 횡풍에 대한 동적특성 해석)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Kim, Myoung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.979-983
    • /
    • 2008
  • A bi-modal tram can travel in not only dedicated way but also road so as to reduce construction costs and increase vehicle operation efficiency, whose passenger capacity is 2,500 to 7,000 persons/direction/hour. A bi-modal has an electronic guidance system that knows the location and route of the vehicle, and uses magnetic markers in the road surface for reference. Since a bi-modal tram will be operated in the downtown area, there is some possibility that strong wind occurred between high-rise buildings can produce sudden lateral movement (displacement) of the vehicle to influence its automatic operation controlled by electronic guidance system. For bi-modal tram in the automatic operation mode, lateral movements occurred by strong wind were calculated and analyzed in the dynamic model developed by using the ADAMS. Some useful relations among vehicle speeds, wind speeds, and lateral behaviors were discussed in this paper.

  • PDF

Dynamic Stability of a Damaged Ship in Beam Wind and Waves (손상된 선박의 횡풍.횡파중에서의 동적 안정성)

  • K.H. Sohn;S.G. Lee;K.S. Choi;Y.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • This paper presents a brief outline of dynamic stability of a damaged ship at final stage of flooding in rough beam wind and waves. One degree-of-freedom, roll equation is adopted with effects of flooding water and external forces due to wind and waves, but without effect of sloshing. We discuss the dynamic stability of the damaged ship in terms of capsizing probability based on risk analysis, the method of which was firstly proposed by Umeda et al.[6] to high speed craft in intact condition. As a result, we can evaluate the dynamic stability of the damaged ship in probabilistic manner according to sea state, operating condition and damage situation.

  • PDF

The Numerical Assessment with Modified Vehicle Rear Body Shape on the Aerodynamic Crosswind Stability Improvement (차량 후미부 형상 변경에 따른 공력 횡풍 안정성 개선에 관한 수치해석 연구)

  • Choi, Sang-Yeol;Kim, Yonung-Tae;Chang, Youn-Hyuck;Ha, Jong-Paek;Kim, Eun-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.51-53
    • /
    • 2008
  • The vehicle aerodynamic crosswind characteristics are mainly governed by the coefficient of side force and yawing moment. These performances affect not only the driving comfort which can be felt by driver but also the safety due to the instability of vehicle. The aims of this investigation are to improve the aerodynamic crosswind performance of sedan vehicle under the crosswind conditions. In order to improve the crosswind stability, numerical analysis has been performed by modifying the rear body shape of vehicle. As the results, we observed about 20% reduction of yawing moment coefficient relative to the base vehicle.

  • PDF

유압식 능동형 현가장치의 특성에 관한 연구

  • 송창섭;이종민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.180-187
    • /
    • 1991
  • 차량현가장치는 주로 운행중 승차감(ride quality)을 향상시키고, 현가장치의 변위(rattle space)를 제한된 범위안에 있도록 유지시켜 주며, 조정안정성(handling performence)을 향상시켜 주는 기능을 수행한다. 승차감을 향상시켜 주기 위해서는 도로 수직입력 및 횡풍등에 의한 외란으로 부터 스프링상질량을 절연 시켜야 하며, 조정안정성을 향상시키기 위해서는 타이어와 지면과의 접촉력변화를 최소화시키면서 타이어가 도로형상을 비슷하게 추종해야 한다. 또한 스프링상 질량과 스프링하 질량과의 충돌이 없이, 또한 현가장치의 각 링크기구들도 충돌없이 일정한 공간내에서 움직여야 하므로 현가장치의 변위는 제한조건내에 존재하여야 한다.(중략)

  • PDF

Automobile aerodynamics (자동차의 공기역학)

  • 강신영;정석호;김성훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.46-54
    • /
    • 1987
  • 자동차의 외형을 설계하는 과정에서 미적인 관점을 떠나 역학적으로 고려할 때에는 공기역학이 매우 중요하게 된다. 이 분야에서 연구하는 전문가에게는 잘 알려진 내용이 될지는 모르겠으나 자동차의 설계 및 개발에 종사하는 일반연구자에게는 공기역학에 관한 문헌 및 전문서적 또한 주 위에서 쉽게 얻을 수는 있으나 부담없이 인식되기에는 그리 쉬운 일은 아니다. 이와 관련하여 Car Stying Volume 50+1/2의 별책으로 간행된 특집호에 여러 가지 흥미있는 내용이 기술 설명 되어 있다. 이는 1985년 발행되었으며 일본자동차연구소에 재직중인 무능진리씨가 해설하였다. 이후 본 내용은 여기서 발췌함을 밝혀둔다. 자동차에 관한 공기역확은 주로 다음과 같은 성능 향상을 위하여 필요하다. (1) 주행연료비 절약 (2) 최고속도의 향상 (3) 고속주행시 조종안정성의 향상 (4) 횡풍에서 주행안전성 향상 (5) 엔진이나 제동장치 등의 냉각성능 향상 (6) 바람에 의한 소음의 감소 (7) 환기성능의 향상 (8) 제상성능의 향상 (9) 공기 조화성능의 향상 (10) 먼지 또는 오물의 부착방지 및 억제 (11) 창문 와이퍼의 작동 등이다.

  • PDF

Theoretical Analysis on Turnover Safety of Train Affected by Wind Pressure (풍압을 받는 철도 차량 전복 안전에 관한 이론 해석)

  • Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.812-817
    • /
    • 2011
  • Rolling stocks are often subjected to the effects of natural cross wind or train wind pressure due to the crossing train. These wind pressure cause the falling-off in running stability and turnover problem. It is sometimes reported that trains are blown over by a gust of wind in overseas. So, many countries enact regulations to secure the safety for wind speed. In this study, we analyzed the difference between the regulation for turnover safety of train which was enacted by Ministry of Land. Transport and Maritime Affairs and that based on the multi-body model. In case of multi-body model, it is assumed that the degrees of freedom for carbody and bogie are assigned an independent values respectively. The results show that the latter approach based on multi-body model can access the safety of turnover and replace the computational method which is accessing with lateral force, derailment coefficient and decrement of wheel load.

  • PDF

Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle (주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구)

  • Kim, Chul-Ho;Kim, Chang-Sun;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.