• Title/Summary/Keyword: 횡팽창량

Search Result 4, Processing Time 0.02 seconds

Evaluation of Impact Characteristics for High Strength Structural Steel at Low Temperature (고강도 구조용강의 저온 충격특성 평가)

  • 김재훈;김덕회;김후식;조성석;전병완;심인옥
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • Impact tests are performed on the high strength structural steel that is being developed for the submarine material. Especially, the impact characteristics of this structural steels at low temperatures are investigated by charpy impact testing. Hyperbolic tangent curve fitting method is used to evaluate the LSE(lower shelf energy), USE(upper shelf energy) and DBTT(ductile-brittle transition temperature). Proportional equations between charpy impact energy and lateral expansion are obtained using the test results. Effect of temperature on the fracture appearance is investigated by using SEM.

  • PDF

An Estimation Method of Settlement and the Behaviour Characteristics of Granular Compaction Pile Reinforced with Uniformly Graded Permeable Concrete (등입도 투수성 콘크리트 보강 조립토 다짐말뚝의 거동특성 및 침하량 평가기법)

  • Kim, Jeong-Ho;Kim, Seung-Wook;Kim, Hong-Taek;Hwang, Jeong-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.73-83
    • /
    • 2006
  • The behaviour characteristics of Granular Compaction Pile (GCP) are mainly governed by the lateral confining pressure mobilized in the soft soil matrix to restrain the bulging failure of the granular compaction pile. The GCP method is most effective in soft soil with undrained shear strength ranging $15{\sim}50kPa$. However, the efficiency of this method reduces the more compressible soil conditions, which does not provide sufficient lateral confinement. In the present study, the GCP method reinforced with uniformly graded permeable concrete is suggested for the extension of application to the soft ground. Also, large triaxial compression tests are conducted on composite-reinforced soil samples for verification of availability of the suggested method and the settlement estimation method of the reinforced GCP is proposed. Furthermore, for the verification of the proposed method, predicted settlements by the proposed method are compared with results of 3-dimensional numerical analyses. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

The Effect of Specimen Size in Charpy Impact Testing (샬피 충격시험에 있어서 시험편 크기의 영향)

  • Kim, Hoon;Kim, Joo-Hark;Chi, Se-Hwan;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 1997
  • Charpy V-notch impact tests were performed on the full-, half-and third-size specimens from two ferritic SA 508 Cl. 3 steels for nuclear pressure vessel. New normalization factors were proposed to predict the upper shelf energy(USE) and the ductile-brittle transition temperature(DBTT) of full-size specimens from the measured data on sub-size specimens. The factors for the USE and the DBTT are $(Bb^2/Kt); and; (Bb/R)^1/2/, $ respectively, where B the width, b the ligament size, $K_{t}$ the elastic stress concentration factor, and R the notch root radius. These correlations successfully estimated the USE and DBTT of the full-size specimens based on sub-size specimen data. In addition, the size effects were studied to develop the correlations among absorbed energy, lateral expansion(LE) and displacement. It was also found that the LE was able to be estimated from the displacement obtained by the instrumented impact test, and that the displacement would be used as a criterion for the toughness of the steels corresponding to change in their yield strength.h.

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF