• Title/Summary/Keyword: 횡압축 분지

Search Result 4, Processing Time 0.021 seconds

Tectonics of the Tertiary Eoil and Waeup basins in the southeastern part of Korea (한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동)

  • Chang, Tae-Woo;Jeong, Jae-Hyok;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.27-40
    • /
    • 2007
  • Stratigraphy has been renewedly set up and the evolution of tectonic events related to basin formation has been exam-ined on the basis of fault-slip data analysis in the Tertiary Eoil and Waeup basins of the southeastern part of Korea. First of all, field mapping was carried out in detail for Tertiary formations and then paleostress analysis were peformed with more than 400 fault slip data collected from 11 sites in the Tertiary formations and the Yucheon Group. It is judged that both the Eoil and Waeup basins filled up with Tertiary deposits might be simultaneously formed in separate locations. The Janggi Group in the Eoil basin is divided into following stratigraphic units in ascending order: Gampo Conglomerte, Hongdeok Basalt, Nodongri Conglomerate and Yeondang Basalt, and the Bomkori Group in the Waeup basin: Waeupri Tuff; Andongri Conglomerate, Yongdongri Tuff and Hoamri Volcanic Breccia. Paleostress analysis by using striated faults reveals five sequential tectonic events: (1) NW-SE transtension (event I), (2) NW-SE transpression (event IIl), (3) NE-SW pure extension (event III), (4) N-S transpression (event IV) and (5) E-W pure compression (event V). Therefore, five sequential tectonic movements are closely associated with the formation and evolution of the Tertiary basins in the study area: tectonic event I of NW-SE extension is related to formation of the Tertiary basins during the late Oligocene to the Early Miocene, tectonic events II, III and IV caused the termination of the Tertiary basin opening and the crustal uplift in the study area, and tectonic event V upheaved the east coast or Korean Peninsula with compressive stress due to intense subduction of the Pacific plate into Asian continent since the Early Pliocene.

Basin evolution and provenance of . sediments of the Cretaceous Poongam sedimentary Basin (백악기 풍암 퇴적분지의 생성 진화와 퇴적물 기원)

  • Cheong Dae kyo;Kim Kyung hee
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.28-34
    • /
    • 1999
  • The Cretaceous Poongam sedimentary Basin in Kangwon-do, Korea consists alluvial deposits of conglomerates, sandstones, mudstones or siltstones, and volcaniclastics. The Poongam Basin was formed as a fault margin sag or a transpressional basin developed along a strike-slip fault zone, and received huge amount of clastic sediments from the adjacent fault-scaip. It formed an aggrading alluvial fan system and a volcaniclast-supplied marginal lake environment, while tectonic activity and volcanism attenuated toward the end of basin formation. Following the Folk's classification, the sandstones of the Poongam Basin are identified as lithic wackes or feldspathic wackes. The areal and sequential variation of the mineral composition in the sandstones is not distinct. The results of K-Ar age dating from the intruding andesites, volcaniclastics and volcanic fragments in sedimentary rocks show a range of 70 Ma to 84 Ma. It suggests that volcarism occurred sequentially within a relatively short period as the pre-, syn-, and post-depositional events. It was the short period in the late Cretaceous that the basin had evolved i.e., the basin formation, the sediment input and fill, and the , intrusion and extrusion of volcanic rocks occurred. The Poongam sedimentary sequence is a typical tectonic-controlled coarse sedimentary facies which is texturally immature.

  • PDF

Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea (한반도 동남부 제3기 분지지역에서의 고응력장 복원)

  • Moon, Tae-Hyun;Son, Moon;Chang, Tae-Woo;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.230-249
    • /
    • 2000
  • Southeastern Korean Peninsula has undergone the polyphase deformations according to the changes of regional tectonic settings during the Cenozoic. Through analyses of more than 600 fault-slip data gathered in the study area, five tectonic events are revealed as the followings: (I) NW-SE transtension, (II) NW-SE transpression, (III) NE-SW pure or radial extension, (IV) NNE-SSW transpression, (V) NE or ENE-WSW transpression. Event I was induced by the pull-apart type extension of the East Sea during 24-16 Ma, which resulted in the NW-SE extension of the Tertiary Basins in SE Korea. Event II was resulted from the collision of SW Japan and Izu-Bonnin Arc (or Kuroshio Paleoland) on the Philippine Sea Plate at ${\sim}$ 15 Ma, which stopped the extension of the Tertiary Basins and originated the uplift of fault blocks in and around SE Korean Peninsula. It was continued until ${\sim}$ 10 Ma. Event III is interpreted as the post-tectonic event after the block-uplifts due to the event II, which indicates a temporal lull in activity of the Philippine Sea Plate since 10 Ma. Event IV was originated from the resumption in activity of the Philippine Sea Plate which was restarted to move toward north at ${\sim}$ 6 Ma. The event made the EW compressional structures behind SW Japan as well as in the Korea Straits, and thus the block-uplifts in SE Korea was resumed again. Lastly, event V was resulted from the gradual decrease in influence of the Philippine Sea Plate and the cooperative compression due to the subduction of the Pacific Sea Plate and the collision of the Indian Plate since 5-3.5 Ma, which generated the NS compressional structures in the offshore along the eastern coast of the Korean Peninsula and thrust up the fault-blocks toward west. This event is continuing so far, and thus is making the active faultings resulting in the present earthquakes of the Korean Peninsula.

  • PDF

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.