• Title/Summary/Keyword: 횡단방향 터널

Search Result 8, Processing Time 0.027 seconds

The development of a back analysis program for subsea tunnel stability under operation: transversal tunnel section (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 횡단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Lee, Sang-Hyun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • When back analysis is used for the assessment of an operating subsea tunnel safety in various measurement information such as stress, water pressure and tunnel lining and ground stiffness degradation, the reliable results within tolerable error rate can be obtained. By utilizing a commercial geotechnical analysis program FLAC3D, back analysis can be performed with a DEA which has already been successfully validated in previous studies. However, relative more time-consumption is the drawback of this approach. For this reason, this study introduced beam-spring model-based on FEM solver which uses less analysis time relatively. Beam-spring program capable of structural analysis of a circular tunnel section was developed by using Python language and combined with the built-DEA. From the measurement datum, expected to estimate the stability of an operation tunnel close to real-time.

Development of beam-spring model to analyse the stability of double-deck tunnel (복층터널 안정성 분석을 위한 빔-스프링 모델 개발)

  • Lee, Sang-Hyun;An, Joon-Sang;Kang, Kyung-Nam;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.301-317
    • /
    • 2017
  • In this study, as an initial study for development of stability analysis program of a double-deck tunnel during life cycle, a structural analysis solver based beam-spring model for the double-deck tunnel is constructed. Effect of parameters(slab supporting type, depth of the tunnel and ground elastic modulus) is analyzed with the beam-spring model. The model is also compared and verified by commercial structural analysis program. It is considered that the slab supporting type affects the integrated behavior with segment lining and influence of intermediate slab on the stability of the tunnel decreases as the tunnel depth increases. The relationship between the ground elastic modulus and the effect of the intermediate slab on the segment lining needs further investigation.

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Identification of Dominant Cause of Cut-Slope Collapse and Monitoring of Reinforced Slope Behavior (개착사면의 붕락요인 분석 및 보강거동 계측)

  • Cho, Tae-Chin;Lee, Sang-Bae;Lee, Guen-Ho;Hwang, Taik-Jean;Kang, Pil-Gue;Won, Byung-Nam
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.20-32
    • /
    • 2011
  • Failure aspects of cut-slope, which induce the sequential collapses during the excavation stage, have been analyzed. Slope rock structures are investigated by examining the orientations and positions of discontinuity planes calculated based on the BIPS image inside the boreholes. Drilled core log has been also used to identify the structural defects. Clay minerals of swelling potentials are detected through XRD analysis. Numerical analysis for slope stability has been performed by utilizing the joint shear strength acquired from the direct joint shear test. Cut-slope collapse characteristics have been studied by investigating the posture of failure-prawn joint planes and the stability of tetrahedral blocks of different sizes. Cross-section analysis has been also performed to analyze the cut-slope behavior and to estimate the amount of reinforcement required to secure the stability of cut-slope. Behavior of reinforced cut-slope is also investigated by analyzing the slope monitoring data.

Assessment of NATM tunnel lining thickness and its behind state utilizing GPR survey (GPR탐사를 통한 NATM터널(무근)라이닝의 두께 분포 및 배면상태 평가)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.717-733
    • /
    • 2019
  • In this study, lining thickness distribution and its behind state (particularly, its void state) were analyzed using the GPR survey data performed on three currently operating NATM tunnels. Results of GPR analysis showed that void areas were mostly detected between concrete lining and primary support, particularly, near the crown of the tunnels. The lining thickness in the left-hand side of the tunnel was different from that of the right-hand side by 8.6~253.5 mm when measured in transverse direction. It was also found that longitudinal cracks were prevailed in the area lining thickness was sharply changed. Longitudinal thickness distribution at the crown was also studied and tested by performing 3 goodness-of-fit tests in order to find the most suitable thickness distribution. Normal distribution (or similar distribution) fit most suitably to the measured data if the measured average thickness was larger than designed one; Gamma and/or Inverse Gauss distribution fit to the measured data reasonably well if the measured average thickness was less than the designed value of thickness. Since actual lining thickness can be a potential index when assessing the state and safety of the unreinforced NATM tunnel lining, measuring of the lining thickness with GPR survey might be needed rather than assuming the thickness is always constant and same with the designed value.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.