• Title/Summary/Keyword: 횡단류

Search Result 135, Processing Time 0.03 seconds

Spray Structure and Cross-section Characteristics of Pulsed Liquid Jet Injected into a Cross-flow (횡단 유동장으로 펄스 분사된 액체 제트의 분무 구조 및 단면 분포 특성)

  • Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • Present studies of these experiments was conducted to using water, over a range of cross-flow velocities from 42 to 136 m/s, with injection frequencies from 35.7 to 166.2 Hz. In cross-flow field, main parameters of liquid jet for secondary breakup were cross-flow drag rather than pressure pulse frequency. As oscillation of the periodic pressure, liquid jet was moved up and down. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increasing.

Experimental investigation of depositional patterns of debris flow (횡단 배수로 내 토석류 퇴적 양상의 실험 연구)

  • Kim, Young-Il;Paik, Joong-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.38-42
    • /
    • 2011
  • 토석류는 산간지역에서 발생할 수 있는 가장 위험한 자연재해 중 하나로 입자-유체 혼합물인 토석류가 중력에 의해 매우 빠른 속도로 이동하는 현상을 의미한다. 산간지역에서의 토석류 발생은 도로의 횡단 배수 구조물의 통수능을 저하시키게 되며 그 결과 도로의 유실 등 막대한 피해를 발생시킨다. 잠재적인 토석류 발생 지역에서의 피해 저감을 위해서는 진보된 설계 기준이 마련되어야 하며 이를 위해 토석류의 횡단 배수구조물 내에서 토석류의 동적 거동 특성을 파악하는 것이 선행되어야 할 것이다. 이번 연구에서는 수리 실험을 통하여 횡단 배수구조물 내에서 토석류의 퇴적 특성을 파악하고자 한다. 수리 실험 장비는 폭이 일정한 사각형 수로로 접근 수로와 하류부 수로로 구성되어 있으며 접근수로의 상단부에서 일정한 유량의 토석류를 연속적으로 유입시켜 경사가 급변하는 하류부 수로 내에서의 토석류 퇴적 특성을 파악하였다. 실험 결과로 토석류의 거동 특성은 토석류의 체적 농도, 입자의 특성, 그리고 접근수로와 하류부 수로의 바닥 경사에 종속됨을 정량적으로 알 수 있었다. 또한, 토석류의 체적 농도나 수로 바닥경사 등과는 상관없이 토석류의 퇴적은 하류부 수로의 종단부인 자유 낙하 지점에서부터 시작되었고 시간이 경과함에 따라 퇴적 지점이 접근 수로 쪽으로 이동하며 퇴적량이 크게 증가하는 현상을 보였다. 이 때, 하류부 수로 내 퇴적된 토석류는 약 $12{\sim}15^{\circ}$의 경사를 보였다.

  • PDF

Spray and Combustion Characteristics of Liquid Jet in Cross Flow (횡단류에 분사되는 액체 제트의 분무 및 연소 특성)

  • Lee, Gwan-Hyeong;Kim, Du-Man;Gu, Ja-Ye;Hwang, Jin-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.48-58
    • /
    • 2006
  • The spray and combustion characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which may be used to generate numerical solutions to spray and chemical reactive fluid problem in three space dimensions and modified to be suitable for simulating liquid jet ejected into the cross flow. Wave model and Kelvin- Helmholtz(KH) /Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Penetration length increases as flow velocity decreases and injection velocity increases. Numerical error increases as inflow velocity increases. The results of flame propagation contour in combustion chamber and local temperature distribution, combustion emissions were obtained.

A Signal Optimization Model Integrating Traffic Movements and Pedestrian Crossings (차량과 보행자 동시신호최적화모형 개발 연구)

  • Shin, Eon-Kyo;Kim, Ju-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.131-137
    • /
    • 2004
  • Conventional traffic signal optimization models assume that green intervals for pedestrian crossings are given as exogenous inputs such as minimum green intervals for straight-ahead movements. As the result, in reality, the green intervals of traffic movements may not distribute adequately by the volume/saturation-flow of them. In this paper, we proposed signal optimization models formulated in BMILP to integrate pedestrian crossings into traffic movements under under-saturated traffic flow. The model simultaneously optimizes traffic and pedestrian movements to minimize weighted queues of primary queues during red interval and secondary queues during queue clearance time. A set of linear objective function and constraints set up to ensure the conditions with respect to pedestrian and traffic maneuvers. Numerical examples are given by pedestrian green intervals and the number of pedestrian crossings located at an arm. Optimization results illustrated that pedestrian green intervals using proposed models are greater than those using TRANSYT-7F, but opposite in the ratios of pedestrian green intervals to the cycle lengths. The simulation results show that proposed models are superior to TRANSYT-7F in reducing delay, where the longer the pedestrian green interval the greater the effect.

Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle (분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구)

  • Lee Kwan-Hyung;Ko Jung-Bin;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

Spray Characteristics of Liquid Jets in Acoustically-Forced Crossflows (음향가진된 횡단류 유동장 내 액체제트의 분무특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This study investigated the acoustic forcing effects on the liquid column breakup length and the trajectory of liquid jets in crossflows. Cold-flow tests with a single hole circular nozzle injector were carried out by changing the injection pressure and acoustic forcing amplitude. Additionally, spray images were obtained at 12 phase angles to investigate the influence of the phage angle. The results revealed that the liquid column breakup lengths generally decreased under the acoustic forcing conditions, in comparison to those under the non-acoustic forcing conditions. However, they were not affected by the variation in the phase angles. On the contrary, it was found that the acoustic forcing hardly influenced the liquid column trajectories.

Turbulent Dispersion Behavior of a Jet Issued into Thermally Stratified Cross Flows(I) (열적으로 성층화된 횡단류에 분출된 제트의 난류확산 거동(I))

  • Kim, Kyung Chun;Kim, Sang Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • Flow visualization study has been conducted to simulate the turbulent dispersion behavior of a crossflow jet physically under the conditions of various thermal stratification in a wind tunnel. A smoke jet with the constant ratio of the jet to freestream velocity is injected normally to the cross flow of the thermally stratified wind tunnel(TSWT) for flow visualization. The typical natures of the smoke dispersion under different thermal stratifications such as neutral, weakly stable, strongly stable, weakly unstable, strongly unstable and inversion layer are successfully reproduced in the TSWT. The Instantaneous velocity and temperature fluctuations are measured by using a cold and hot-wire combination probe. The time averaged dispersion behaviors, the centerline trajectories, the spreading angles and the virtual origins of the cross jet are deduced from the edge detected images with respect to the stability parameter. All the general characteristics of the turbulent dispersion behavior reveal that the definitely different dispersion mechanisms are inherent in both stable and unstable conditions. It is conjectured that the turbulent statistics obtained in the various stability conditions quantitatively demonstrate the vertical scalar flux plays a key role in the turbulent dispersion behavior.

A Study on the Reduction of Discrete Frequency Tones of a Cross-Flow Fan of Air-Conditioners -Studies on the Random Distribution of Fan Blades and the Skewed Stabilizers- (에어컨 용 횡단류 홴의 특정 주파수 소음 성분의 저감 대책에 관한 연구 -날개의 랜덤 배열과 경사진 스태빌라이저에 대한 연구-)

  • 구형모
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.870-878
    • /
    • 1998
  • The cross-flow fan which constitutes a fan-duct system with a stabilizer and a scroll casing is widely used in many air-ventilating and air-conditioning devices. Its ooperating points of high efficiency and loading conditions frequently induce a annoying sharp tonal component of discrete frequency on the noise spectrum, which is open called as a BPF(Blade-Passing-Frequency) noise and degrades the sound quality of the devices. this BPF tone has been one of the defects of the cross-flow fan. This study proposes two methods in order to reduce this tonal noise component, which are the random distributions of the fan blades and the skewed shapes of the stabilizer. The proposed methods are verified by a simple analytical model and are applied in manufacturing the cross-flow fan and the stabilizer samples. Some experiments are carried out to verify the reduction capability of BPF tones of above two schemes and the experimental results are analyzed. The comparison between two method is also carried out.

  • PDF

Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream (아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성)

  • Lee, In-Chul;Cho, Woo-Jin;Lee, Bong-Su;Kim, Jong-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.