• Title/Summary/Keyword: 회피기동

Search Result 57, Processing Time 0.026 seconds

Ground Vibration Test for Korean Utility Helicopter (한국형 기동헬기 전기체 지상진동시험)

  • Kim, Se-Hee;Kwak, Dong-Il;Jung, Se-Un;Choi, Jong-Ho;Kim, Joung-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.495-501
    • /
    • 2013
  • Korean Utility Helicopter (KUH) has been designed to avoid the blade passing frequency and any instability due to a coupling of dynamic characteristics between the main rotor and the airframe in ground operation. For these design objectives, the vibration analysis and the ground resonance analysis were performed to analyze the dynamic characteristics of the airframe and the main rotor. Then, the whirl-tower test was conducted to identify the dynamic characteristics of the main rotor and the ground vibration test (GVT) was conducted to identify the dynamic characteristics of the airframe. The GVT for KUH was conducted with the test conditions and test articles established in consideration of each flight and ground condition. This paper shows the method and technique for performing the GVT for KUH and presents the correlation technique and the results for the correlated analysis model.

Maximum Launch Range and F-pole Evaluation For Semi-Active Radar Missile (반능동 레이더 미사일에 대한 최대 사거리 및 F-pole 평가)

  • Kwon, Ky-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.92-98
    • /
    • 2002
  • In this study, maximum launch range and F-pole are evaluated and analyzed for the semi-active radar missile concerning various launch condition, performance limitation and target maneuvers. Furthermore, general evasion maneuvers are considered when shooter approaches to target with head-on conditions. A point-mass target, shooter and missile model is used including aircraft and missile dynamics. More realistic missile motion simulation is conducted using aerodynamic performance data, geometry, performance limitation, radar seeker performance and so on. Maximum launch range, which is the distance for intercept satisfying target and missile motion and performance, is evaluated using root finding method. F-pole, which is the distance between target and shooter when intercept is completed, is evaluated assuming that shooter maneuvers through pursuit guidance to target.

Construction of Optimal Anti-submarine Search Patterns for the Anti-submarine Ships Cooperating with Helicopters based on Simulation Method (대잠 헬기와의 협동 작전을 고려한 수상함의 최적 대잠탐색 패턴 산출을 위한 시뮬레이션)

  • Yu, Chan-Woo;Park, Sung-Woon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • In this paper we analyzed the search patterns for the anti-submarine warfare (ASW) surface ships cooperating with ASW helicopters. For this purpose, we modeled evasive motion of a submarine with a probabilistic method. And maneuvers and search actions of ships and helicopters participating in the anti-submarine search mission are designed. And for each simulation scenario, the case where a ship and a helicopter searches a submarine independently according to its optimized search pattern is compared with the case where the search platforms participate in the ASW mission cooperatively. Based on the simulation results, we proposed the reconfigured search patterns that help cooperative ASW surface ships increase the total cumulative detection probability (CDP).

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Analytical Design of the Space Debris Collision Avoidance Maneuver based on Relative Dynamics (상대운동방정식 기반의 우주파편 충돌회피기동의 해석적 설계기법)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1048-1052
    • /
    • 2013
  • Recently, many countries have attempted to protect their satellites from damage caused by space debris. To design these collision avoidance maneuvers, optimal algorithms based on numerical simulations are widely used due to their practicality. However, these algorithms often require a great expenditure of time in order to find solutions. Therefore, in this paper, a simple analytical strategy is suggested to find the initial prediction required to find these numerical solutions for collision avoidance maneuvers by using relative dynamics for the rendezvous and docking problems. For this analytical strategy, the simple dynamics on the CW (Clohessy-Wiltshire) frame is adopted as an attempt to introduce an analytical solution.

Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기의 충돌회피기동 모사)

  • Hwang, Soo-Jung;Lee, Myeong-Kyu;Oh, Soo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Optimal Evasive Maneuver for Sea Skimming Missiles against Close-In Weapon System (근접방어무기체계에 대한 함대함 유도탄의 최적회피기동)

  • Whang, Ick-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2096-2098
    • /
    • 2002
  • In this paper, the optimal evasive maneuver strategies for typical subsonic ASM(anti-ship missile) to reach its target ship with high survivability against CIWS(close in weapon system) are studied. The optimal evasive maneuver input is defined by the homing command optimizing the cost function which takes aiming errors of CIWS into account. The optimization problem for the effective evasive maneuver is formulated based on a simple missile dynamics model and a CIWS model. By means of solving the problem, a multiple hypotheses testing method is proposed. Since this method requires generation of too many hypotheses, the hypothesis-pruning technique is adopted. The solution shows that the optimal evasive maneuver is a bang-bane shaped command whose frequency is varied by the aimpoint determination strategy in CIWS.

  • PDF

Tactical Ballistic Missile Defense Console using Client-server and REST Architecture (클라이언트-서버와 REST 아키텍처를 이용한 탄도탄 방어체계 콘솔)

  • Choi, Jae-Ho
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1164-1165
    • /
    • 2019
  • 최근 북한은 단거리탄도탄을 포함한 미사일 발사 시험을 수차례 수행했다. 사거리 증가 뿐만 아니라 발사지점 예측 교란을 위한 발사방법의 다변화 및 요격 난이도 상승을 위한 미사일 회피 기동 등 다양한 시도로 점점 탄도탄 요격이 어렵도록 하고 있는 현실이다. 본 논문에서는 클라이언트-서버와 REST 아키텍처를 이용하여 확장성이 높고 신뢰성 있는 요격체계 콘솔을 제안한다. 이를 통해 제한된 탄도탄 요격 가능 시간 내 효과적인 전상상황 가시화를 통해 운용자의 작전결심을 도와 실패없는 탄도탄 요격이 가능하도록 할 수 있고, 확장 가능성을 바탕으로 다수의 타격 체계의 중앙제어를 위한 원격제어 및 무인화를 위한 초석으로 삼을 수도 있을 것이다.

Human-in-the-Loop Simulation Analysis of Conflict Resolution Maneuvers Using an Air Traffic Control Simulator (항공관제시뮬레이터를 이용한 항공기간 회피 기동의 위험도 분석)

  • Jeong, Se hun;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.739-747
    • /
    • 2015
  • With rapid growth in the technologies and demand of Remotely Piloted Aircraft Systems (RPASs), integration of such systems into the existing airspace system is becoming an issue in many countries. RPAS have different flight performances, communication characteristics, separation assurance mechanisms, and human machine interfaces from manned aircraft. To establish rules and regulations for RPAS integration, it is important to understand the impacts of RPASs on the airspace system. A simulation system that integrates manned aircraft, air traffic control, and RPASs is developed in Inha University to investigate these impacts through Human-in-The-Loop (HiTL) simulations. Three conflict resolution scenarios between a manned aircraft and a Remotely Piloted Aircraft (RPA) were constructed and tested. Human factors such as the response times of pilots and controllers were measured and analyzed as well as the risk of each maneuver.

Comparative Analysis of Circling Approach Procedure Design Standards Applied to Domestic Airports (국내 공항에 적용된 선회접근 절차 설계기준의 비교 분석)

  • Dong-kwan Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.272-277
    • /
    • 2024
  • In most countries, instrument flight procedures are designed by applying one of the following standards: the International Aviation Organization's DOC 8168, Air Navigation Services and Operation Procedures (PANS-OPS), or the US Federal Aviation Administration's TERPS, Terminal Procedures. In particular, the circling approach procedure has many differences between the two standards, and the US terminal procedure (TERPS) has become more complicated since 2013 by applying expanded standards depending on altitude. The circling approach procedures are more risky than straight-in approach procedures because it involves maneuvering the aircraft close to the ground at low energy for landing. In order to accurately understand these differences, this study provides to distinguish by what criteria the circling approach procedure is designed according to individual domestic airports in Korea, to calculate the radius for the range of circling approach areas that guarantee minimum obstacle avoidance during circling approach maneuvers, and to present methods for performing safe circling approach procedures.