• Title/Summary/Keyword: 회전 자화벡터 측정실험

Search Result 2, Processing Time 0.015 seconds

Vector Control of an Induction Motor for the Field Weakening Region Considering the Variation of Magnetizing Inductance (자화인덕턴스 변화를 고려한 약계자 영역에서의 유도전동기 벡터제어)

  • 이택기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 1999
  • In case of field weakening region, torque is directly affected by flux. In this region, the flux reference is cIecreased inversely proportional to the rotor speed. As the flux is decreased, the magnetizing inductance is nonnally increased The increased magnetizing inductance limited voltage for controlling current In this paper, rreasuring q axis voltage in field weakening region, magnetizing inductance in flux calculating can be readjusted. Computer simulation and experiment results demostrate the efficacy of the prqx>sed rrethod. Proposed algorithm is expected to the application of the adjustable drive system in the spinning and weaving field. field.

  • PDF

Behavior of the Vortex Flux in a Polycrystalline $Y_1Ba_2Cu_3O_{7-\delta}$Superconductor in a Rotational Experiment (회전실험에서의 다결성 $Y_1Ba_2Cu_3O_{7-\delta}$ 초전도체내의 vorterx flux의 거동)

  • 박성재;김용석;김채옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.752-757
    • /
    • 1998
  • Rotational Magnetization-vector measurements have been performed on a polycrystalline $Y_1Ba_2Cu_3O_{7-\delta}$ sample in field-cooled condition at 4.2 K. The experimental results show that vortex flux density(B) consists of 3 groups :(1) a weak pinning part ($B_w$) which stays at a fixed angle relative to the magnetic field f(H) ; (2) a strong pining part($B_s$) which rotates rigidly with the sample and has same magnitude with the sample rotation, and(3) and intermediated pining part ($B_i$) which rotates rigidly with the sample, but whose magnitude changes with the sample rotation Our results have been explained in terms of a distribution in the strength of the vortex pinning torque and a repulsive intervortex torque.

  • PDF