• Title/Summary/Keyword: 회전 우주

Search Result 439, Processing Time 0.081 seconds

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Drop Test Simulation of a Fuel Tank (연료탱크의 낙하 시험 시뮬레이션)

  • Park, Sun-Young;Bae, Jae-Sung;Hwang, Jai-Hyuk;Lee, Soo-Yong;Chung, Tae-Kyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1032-1037
    • /
    • 2008
  • The fuel tank systems of fixed wing and rotary wing aircrafts require the self-sealing and crash-worthiness for their survivability. For these requirements, the flexible composite fuel tank is generally used. In this study, the performance of the flexible composite fuel tank is investigated. The FE simulation includes the drop test of a fuel tank using MSC.DYTRAN. MSC.DYTRAN can provide the fluid-structure modeling of these test from Euler and Lagrange grids. Using MSC.DYTRAN, the finite element modeling of the test cube of the flexible fuel tank and its FE simulation are performed for various environments. The simulation results can show if the test cube satisfies the performance requirements of the fuel tank.

The Development of Coaxial Rotor MAV (동축 반전 로터 MAV 개발)

  • Chae, Sang-Hyun;Baek, Sun-Woo;Lee, Sang-Il;Kim, Tae-Woo;Lee, Jun-Bae;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.875-883
    • /
    • 2007
  • The objective of this research was to develop a coaxial rotor MAV which is suitable for a indoor reconnaissance mission. Preliminary design parameters were determined, based on the dimensions of other reference MAVs. The designed rotor performance was estimated by Blade Element Momentum Theory, and the analyses were compared against the measurements. Stability and vibration issues of the prototype were circumvented by making parts of vehicle with NC machine, as well as equipped with teetering rotor and stabilizer. The designed coaxial rotor MAV showed successfully flight equipped with video camera. However, it was founded that further research activities should be focused on efficient rotor design to obtain better performance.

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

Dual-rotor Wind Turbine Generator System Modeling and Simulation (이중 로터 풍력발전 시스템 모델링 및 시뮬레이션에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Min, Byoung-Mun;Lee, Hyun-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.87-95
    • /
    • 2004
  • In this paper, an efficient method for modeling a dual-rotor type wind turbine generator system and simulation results are presented. The wind turbine is treated as a collection of several rigid bodies, each of which represents, respectively, main and auxiliary rotor blades, high/low speed shafts, generator, and gear system. Simulation software WINSIM is developed to implement the proposed modeling method and is used to investigate the transient and steady-state performance of the wind turbine system.

Hybrid Dual Quaternion Algorithm For Precise Strapdown Inertial Navigation (정밀 스트랩다운 관성항법을 위한 혼합 이체쿼터니언 알고리즘)

  • Shim, Ju-Young;Lee, Han-Sung;Park, Chan-Gook;Yu, Myeong-Jong;Lee, Hyung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.627-632
    • /
    • 2007
  • Dual quaternion is efficient methodology to express rotation and translation of the vehicle's movements in the unified frame work. Recently, a strapdown inertial navigation algorithm based on dual quaternion was introduced. By comparing and analyzing the classical and dual-quaternion algorithms, this paper proposes a new strapdown inertial navigation algorithm that maintains the accuracy benefit of the dual-quaternion algorithm with considerable computational reduction. Simulation results show the efficiency of the proposed hybrid strapdown navigation algorithm.

Establishment of Flight Simulation Environment for Evaluation of Helicopter Flying Quality (헬리콥터 비행성 평가를 위한 모의비행시험 환경의 구현)

  • Han, Dong-Ju;Lee, Sang-Haeng
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.783-791
    • /
    • 2007
  • For an access to specified helicopter simulator qualification's level C or FTD(Flight Training Device) level 5 of FAA(Federal Aviation Administration) AC(Advisory Circular) 120-63, the mathematical model of a single rotor helicopter flight dynamics is investigated. From the rotorcraft simulation model validated by evaluation of its flight performance, the feasibility of the flight dynamic model that is selected for its effectiveness has been proved. Thereby the simulation environment for evaluation of helicopter flying quality is established with the development of FTD for training and testing the flight performance.

Strategy for Helicopter Industry to be a Growth Driver (헬기산업의 성장동력화 방안)

  • Park, Joong-Yong;Chang, Byeong-Hee;Lee, Dae-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • We study the possibility of entering into helicopter market with respect to demand, industry structure and infrastructure. In conclusion, it is possible to enter into it based on domestic demand if we complement some technology, financial assistance system and helicopter operation related regulation. Strategy is made for helicopter industry to be a growth driver and then we suggest five projects to carry out it. Those are lasting creation of helicopter demand, possession of core part material and competitive technology, construction of airworthiness certification system and infrastructure for activation of helicopter operation, improvement of financial assistance system and finally strengthening policy modulation between civil, army, and government.

  • PDF

헬리콥터 주 로터 훨타워(Whirl Tower) 사례 및 동향

  • Kim, Deok-Gwan;Hong, Dan-Bi;Song, Geun-Ung;Kim, Tae-Ju;Kim, Seung-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.2
    • /
    • pp.23-32
    • /
    • 2007
  • 헬리콥터 주 로터 시스템은 헬리콥터 전체 성능을 좌우하고, 비행특성을 결정하는 핵심 구성품이다. 주 로터 시스템은 회전하면서 추력 및 조종력을 발생시키기 때문에 동적 밸런싱을 맞추는 것도 중요한 개발단계업무 중에 하나이다. 주 로터 시스템의 개발 과정에서 헬리콥터 비행시제 장착 전에 동적 밸런스 시험, 성능시험, 안정성 시험 등을 포함하는 훨시험(whirl test)을 수행하게 된다. 이 시험 수행을 위해 제작되는 시험장치가 훨타워(whirl tower)이다. 세계 유수 헬리콥터 회사들은 주 로터 훨시험을 위한 설비인 훨타워를 보유하고 있으며, 지속적으로 성능 개량 등을 통해 최신의 기술 및 장비를 적용하여 운영하고 있다. 본 논문에서는 대표적으로 사용되고 있는 해외 헬리콥터 회사들의 훨타워의 사례를 설명하고 설비의 기능을 기술함으로써 기술적 동향에 대하여 살펴보았다. 현재 한국형헬기개발사업(KHP)에서 구축중인 다목적 의 WTTF(whirl tower test facility) 요구조건 및 설계 현황에 대해서도 기술하였다. 당 연구원의 WTTF는 한국형기동헬기(KUH)의 주 로터 훨시험 및 내구성 시험을 위해 구축되고 있다. 본 시험설비는 연구개발용 시험과 양산용 시험을 모두 수행할 수 있도록 다목적으로 개발될 예정이다. 본 설비는 기존 해외 설비와는 차별화되어 다목적 시험을 할 수 있도록 설계가 진행중이며, 2008년12월에 구축 완료 예정이다.

  • PDF

Development of Helicopter Chassis Dynamometer System for the Scaled Helicopter Ground Test (축소 헬기 지상시험을 위한 헬리콥터 섀시다이나모미터 개발)

  • Kim, Ick-Tae;Kim, Jae-Soo
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2012
  • This paper developed Helicopter Chassis Dynamometer System(HCDS) to perform the bench test of the scaled rotor blade and to design a scaled model helicopter flight test bed and accomplished the scaled helicopter ground test. The scaled helicopter should be checked the relation of thrust and power input to maintain regular RPM by collective pitch angle versus throttle input. It showed hovering performance results of IGE with OGE, the max. F.M. was 0.76 without ground effect. The results of the chassis dynamometer test of scaled helicopter will usefully apply to design the scaled helicopter and evaluate the rotor blade performance.