• Title/Summary/Keyword: 회전 송출공

Search Result 3, Processing Time 0.021 seconds

A study on Discharge Characteristics of Rotating Discharge Hole with inlet edge shape (입구 형상에 따른 회전 송출공의 송출특성 연구)

  • Kang, Se-Won;Ha, Kyung-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.746-752
    • /
    • 2000
  • A study on discharge characteristics of a rotating discharge hole is very important to enhance the performance of an induction motor which have external forced cooling system. The discharge characteristics of rotating discharge holes are influenced by rotating speed, length-to-diameter ratio, inlet shape of rotor holes, etc. An experimental study on the effect of chamfered inlet edge of rotor inlet part with various depth-to-diameter and inlet chamfered edge angle is conducted. Depth-to-diameter ratios range from 0 to 0.5 and inlet chamfered edge angle range from 0 to 60. As a result, there is an optimal design point of inlet chamfered edge depth. And the inlet edge angle far maximum discharge coefficient is influenced mainly by the rotating speed of discharge holes.

  • PDF

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

Measurement of Pressure Coefficient in Rotating Discharge Hole by Telemetric Method (무선계측기법을 이용한 회전 송출공의 압력계수 측정)

  • Ku, Nam-Hee;Kauh, Sang-Ken;Ha, Kyoung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1248-1255
    • /
    • 2003
  • Pressure coefficient in a rotating discharge hole was measured to gain insight into the influence of rotation on the discharge characteristics of rotating discharge holes. Pressures inside the hole were measured by a telemetry system that had been developed by the authors. The telemetry system is characterized by the diversity of applicable sensor type. In the present study, the telemetry system was modified to measure static pressure using piezoresistive pressure sensors. The pressure sensor is affected by centrifugal force and change of orientation relative to the gravity. The orientation of sensor installation for minimum rotating effect and zero gravity effect was found out from the test. Pressure coefficients in a rotating discharge hole were measured in longitudinal direction as well as circumferential direction at various rotating speeds and three different pressure ratios. From the results, the behaviors of pressure coefficient that cannot be observed by a non-rotating setup were presented. It was also shown that the discharge characteristics of rotating discharge hole is much more influenced by the Rotation number irrespective of pressure ratio.