• 제목/요약/키워드: 회전자팬

검색결과 2건 처리시간 0.013초

무선계측기를 이용한 회전자팬 및 엔드링에서의 대류 열전달 (Convective heat transfer on the rotor fan and endring of the TEFC induction motor with telemetry system)

  • 윤명근;하경표;고상근
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.510-519
    • /
    • 1998
  • Recently, computer modelling is increasingly used as a design tool, which requires more detailed data for heat transfer coefficients in various regions of the induction motor. But there are little information about those of rotor fan and endring because of difficulty in measuring signals in rotating bodies. In the present studies, the temperature signals were precisely measured with self-developed telemetry system, which had multi-channels and high rotational speed. After some losses were compensated, the heat transfer coefficients of the rotor endring and fan surfaces were measured. Minimum heat transfer region was existed with endcap plate distance and maximum heat transfer was found at some rotor fan width. It was also studied that how the guide plate and endcap inside rib effected on the rotor heat transfer. The higher heat transfer were obtained with decreasing guide plate distance, increasing the number and height of endcap inside rib. The correlation equations of the results were obtained and compared with others. Above results of the heat transfer coefficients can be used as basic data for cooling design of the various kind of motors.

전폐형 유도전동기 엔드와인딩 표면의 열전달에 미치는 회전자팬의 영향 (Rotor fan effects on end winding heat transfer in totally enclosed fan cooled induction motor)

  • 윤명근;고상근
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.928-938
    • /
    • 1997
  • The end winding is an important part in induction motor for thermal analysis. But there is little information on the heat transfer coefficient of that surfaces because of geometrical complexity. So our experimental object is to know the heat transfer coefficient of end winding and find the optimum design parameter of rotor fan. Carbon coated papers were used for a uniform heat generating surfaces which were easy to fabricate. The experiments of some parameters were performed as varying rotation speed of rotor fan. We obtained the local and average Nusselt number of the end winding surfaces by correcting radiation and conduction losses errors. The results showed that the average Nusselt number increased with rotor fan blade number and width but decreased with end winding length. However, the increasing limits existed in the case of rotor fan width and blade number. So optimum design value were obtained for rotor fan width and blade numbers.