• Title/Summary/Keyword: 회전익 채널

Search Result 2, Processing Time 0.016 seconds

Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing (회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구)

  • Kim, Youn J.;Jeon, Y.-R
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

A Study on the 2-D Unsteady Flow and Heat Transfer on Turbine Rotor Passage (가스터빈 회전익 채널내 2차원 비정상 유동 및 열전달 특성에 관한 연구)

  • Koo, K.H.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.428-433
    • /
    • 2000
  • The characteristics of unsteady heat transfer and boundary layer flow in the SSME turbine rotor passage are investigated with LRN $k-{\varepsilon}$ turbulence model. The unsteady flow and heat transfer in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid/boundary-layer flow approach. The relevant governing equations are discretized to a system of finite different equations by means of a BTBCS implicit method. These equations have been solved numerically, for the velocity and temperature fields using TDMA method. Heat flux on the blade surface and flow parameters in the rotor passage are calculated with wake interaction. Numerical results show that velocity, pressure, turbulent kinetic energy and heat flux on the blade surface are varied periodically by wake passing.

  • PDF