• Title/Summary/Keyword: 회전시트

Search Result 13, Processing Time 0.019 seconds

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Optimization of the Dual-layer LGP for Improving Luminance and Uniformity of Edge Type Back Light Unit (에지형 Back Light Unit의 휘도와 균일도 향상을 위한 복합도 광판 최적화)

  • Oh, Se-Won;Kim, Nam;Kim, Eun-Suk;An, June-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.247-253
    • /
    • 2010
  • A dual-layer light guide plate (DLGP) was designed and a simulation was done to optimize the structure of the light guide plates used at backlight units while maintaining the luminance, uniformity and viewing angle by reducing the optical sheet. The characteristic of DLGP with prism pattern with curvature on the top surface is simulated and the luminance and uniformity are obtained. In order to improve the uniformity, the V groove prism pattern on the bottom surface was turned by an angle of $90^{\circ}$. In particular, we used the pitch calculation program to select the value of the ratio (Max : Min) between the pitch at the extreme outside and the pitch at the middle, the number of V groove lines and the variance at the bottom pattern of DLGP. After that, the optimum distance between V grooves was determined. For optimizing the DLGP, we examined the uniformity again by changing the number of pattern grooves on the bottom surface of DLGP. As a result of the simulation, we find that the BLU with DLGP has a uniformity of 90.6% and viewing angle $145^{\circ}$.