• Title/Summary/Keyword: 회생 리프트

Search Result 2, Processing Time 0.02 seconds

A study of Performance Requirement for Energy-Regenerative Lift (회생에너지 재생시스템을 적용한 건설용 리프트의 요구성능 도출)

  • Won, Myeungkyun;Lim, Hyunsu;Lee, Myungdo;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.205-206
    • /
    • 2011
  • Various studies on energy saving for construction sites have been carried out and some construction machines using motors have installed regenerative systems such as elevators and excavators. The construction lift also uses motors and generates more regenerative energy when the lifts descend because lifts convey many construction materials and workers. For this reason, it is possible to apply the regenerative system to the construction lift. However, if the system is applied without considering the lift's characteristics, the new development would fail; we therefore need to propose a performance requirement. Thus, the purpose of this study is to propose a performance requirement for the energy-regenerative lift prior to developing the energy-regenerative lift.

  • PDF

A Study on the Regeneration Efficiency of the Electric Forklift Using the Variable Hydraulic Motor (가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구)

  • Park, Yong Soo;Yu, Ying-Xiao;Yun, Jin Su;Do, Tri Cuong;Han, Sung Min;Shin, Jung Woo;Yu, Choong Mok;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2020
  • In modern society, the energy-saving problem of industrial vehicles is economically and environmentally critical. Energy savings using the potential energy of forklifts are one of the viable solutions to resolving this problem. The basic concept of this study is to operate the hydraulic motor and recharge the battery using the flow rate from the cylinder when loading heavy objects and lowering the fork. To save energy, the torque and rotational speed of the generator should be optimized according to the load and descent speed to increase efficiency. To this end, we propose a system that optimizes energy saving efficiency by controlling the swashplate angle of the variable hydraulic motor through the GA(Genetic-Algorithm). The results were verified by building and comparing fixed motor models and variable motor models using the AMEsim. The results of the study show that the proposed optimized swashplate angle increases the energy saving efficiency by approximately 6%-8%, depending on the working conditions.