• Title/Summary/Keyword: 회색가스재조합

Search Result 6, Processing Time 0.019 seconds

Study on Regrouping of Gray Gases in spectral WSGGM for Arbitrary Mixtures of CO2 and H2O Gases (이산화탄소-수증기 혼합가스에 대한 파장별 회색가스가중합법에서 회색가스재조합에 대한 연구)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.227-235
    • /
    • 2003
  • The WSGG-based narrow band model was employed to solve the radiative transfer equations along isothermal and non-isothermal paths through $CO_2-H_2O-N_2$ gas mixtures at 1 atm. When the WSGGM is applied for arbitrary gas mixtures by considering the multiplication property of transmissivity in overlapping bands, the number of gray gases is significantly increased. To reduce the computation time, three different regrouping methods for the gray gases are tested in obtaining the mean absorption coefficient for each gray gas group. Among them, the regrouping method by minimizing the regrouping error shows the best results. For the isothermal media, 10 gray gases show fairly good agreement with the results by statistical narrow band(SNB) model which are regarded as reference solutions. For non-isothermal media, 20 gray gases show good agreement with reference solutions.

Development of the WSGGM with Gray Gas Regrouping and Application to the 3-Dimensional Radiative Transfer (회색가스재조합을 이용한 회색가스가중합법 개발 및 3차원 복사열전달에의 적용)

  • Kim Tae-Kuk;Park Won-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.101-109
    • /
    • 2006
  • The narrow band-averaged transmissivity of $CO_2-H_2O$ mixtures is expressed by multiplying the transmissivities of $CO_2\;and\;H_2O$. Applying the multiplication property of narrow band transmissivities for gas mixtures of $CO_2-H_2O$ of the narrow band based WSGGM (weighted sum of gray gases model), the number of gray gases, required for accurate representation of the absorption characteristics by using the narrow band based WSGGM, is significantly increased. To reduce the computational loads by reducing the number of gray gases, we propose a gray gas regrouping process where the gray gases used for .the WSGGM are regrouped into a specified number of groups according to the magnitudes of absorption coefficients. To evaluate the proposed WSGGM for gas mixtures, the radiative transfer problems through 3-dimensional gas media are considered. The radiative source terms and the radiative heat fluxes obtained by using the proposed method are fairly well compared to previous results obtained by using the SNB model and other models. The regrouping technique results in an excellent computational efficiency with minor loss of accuracy.

3-Dimensional Radiative Transfer Analysis by Using the Narrow Band Based WSGGM with a Gray Gas Regrouping Technique (회색가스 재조합에 의한 좁은밴드 회색가스가중합법을 이용한 3 차원 복사열전달 해석 연구)

  • Park, Won-Hee;Kim, Tae-Kuk;Son, Bong-Sei
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.284-289
    • /
    • 2003
  • The narrow band-averaged transmissivity of $CO_2-H_2O$ mixtures is expressed by multiplying the transmissivities of $CO_2$ and $H_2O$. Applying the multiplication property of narrow band transmissivities for gas mixtures of $CO_2-H_2O$, the number of gray gases, required for accurate representation of the absorption characteristics by using the narrow band based WSGGM, is significantly increased. To reduce the computational loads by reducing the number of gray gases, we propose a gray gas regrouping process where the gray gases used for the WSGGM are regrouped into a specified number of groups according to the magnitudes of absorption coefficients. To evaluate the proposed WSGGM for gas mixtures, the radiative transfer problems through three-dimensional gas media are considered. The radiative source terms and the radiative heat fluxes obtained by using the proposed method are fairly well compared to those obtained by using the SNB model. The regrouping technique results in an excellent computational efficiency with minor loss of accuracy.

  • PDF

Application of Weighted Sum of Gray Gases Model with Gray Gas Regrouping for Opposed Flow Flames (대향류화염에서의 회색가스재조합 회색가스가중합법의 적용)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.9-17
    • /
    • 2005
  • WSGGM with gray gas regrouping is successfully applied to study the flame structure of opposed flow flames including effect of radiative transfer. The statistical narrow band model is used to obtain the benchmark solutions. Results obtained by using the optically thin model are shown to overestimate the emission and to predict the flame structures inadequately especially for optically thick and low stretch rate flames. Computed results by using the WSGGM with 10 gray gases and SNB model show reasonable agreements with each other, and the required calculation time for the WSGGM is acceptable for engineering applications.

  • PDF

Study on the Flame Structures of Counter Flow Flames by Using Different Gas Radiation Models (가스 복사 모델에 따른 대향류화염에서의 화염 구조 연구)

  • Park, Won-Hee;Kim, Dong-Hyun;Kim, Tae-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1493-1498
    • /
    • 2004
  • WSGGM with gray gas regrouping is successfully applied to study the flame structure of counter flow flames including effect of radiative transfer. The statistical narrow band model is used to obtain the benchmark solutions. Results obtained by using the optically thin model are shown to overestimate the emission and to predict the flame structures inadequately especially for optically thick and low stretch rate flames. Computed results by using the WSGGM with 10 gray gases and SNB model show reasonable agreements with each other, and the required calculation time for the WSGGM is acceptable for engineering applications.

  • PDF

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume (항공기 배기 플룸의 파장별 IR 신호 해석)

  • Gu, Bonchan;Baek, Seung Wook;Yi, Kyung Joo;Kim, Man Young;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.640-647
    • /
    • 2014
  • Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.