• Title/Summary/Keyword: 회귀분석방법

Search Result 3,667, Processing Time 0.045 seconds

Development of a Traffic Safety Index for Urban Arterials (도시부 간선도로의 교통안전성 평가지표 개발)

  • 최재성
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.3
    • /
    • pp.47-56
    • /
    • 1998
  • 본 연구에서 한 지역의 교통안전성을 분석할 수 있도록 교통안전성 지표가 개발되 었다. 연구방법은 회귀분석, 신경망 이론의 적용을 통한 분석, 설문조사였으며 조사지역은 서울시 강남지역이었다. 조사자료는 1996년 교통사고율과 주요 도로설계변수였다. 회귀분석 의 겨로가 8차로 미만의 도로에서는 정지시거가 교통사고 발생을 잘 설명했고 8차로 이상 의 도로에서는 횡단보도의 수가 적절한 설명변수로 선정되었다. 그러나 교통사고 발생에 대 한 설명력이 0.5에도 미치지 못해 심층분석이 요청되어 신경망 이론의 적용이 이루어졌다. 그 결과 교통사고 발생은 회귀분석 결과처럼 정지시거와 횡단 보도수에 관련이 있는 것으로 나타났으며 더불어 접속부의 시거가 중요하게 부각되었다. 한편 사람들의 교통안전성에 대 한 주관적 인식을 알기 위해 설문조사가 이루어졌으며 그 결과 정지시거 외에도 속도의 중 요성이 제기되었다. 이와 같은 분석결과를 근거로 하여 교통안전성 지표가 개발되었으며 지 표 산출에 필요한 평가방법도 정립되었다.

  • PDF

A Bayesian Regression Model to Estimate the Deterioration Rate of Track Irregularities (궤도틀림 진전율 추정을 위한 베이지안 회귀분석 모형 연구)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • This study considered how to estimate the deterioration rate of the track quality index, which represents track geometric irregularity. Most existing studies have used a simple linear regression and regarded the slope of the regression equation as the progress rate. In this paper, we present a Bayesian approach to estimate the track irregularity progress. This Bayesian approach has many advantages, among which the biggest is that it can formally include the prior distribution of parameters which can be derived from historic data or from expert experiences; then, the rate can be expressed as a probability distribution. We investigated the possibility of applying the Bayesian method to the estimation of the deterioration rate by comparing our bayesian approach to the conventional linear regression approach.

Analysis of health-related quality of life using Beta regression (베타회귀분석 방법을 이용한 건강 관련 삶의 질 자료 분석)

  • Jang, Eun Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.547-557
    • /
    • 2017
  • The health-related quality of life data are commonly skewed and bounded with spike at the perfect health status, and the variance tended to be heteroscedastic. In this study, we have developed a prediction model for EQ-5D using linear regression model, beta regression model, and extended beta regression model with mean and precision submodel, and also compared the predictive accuracy. The extended beta regression model allows to model skewness and differences in dispersion related to covariates. Although the extended beta regression model has higher prediction accuracy than the linear regression model, the overlapped confidence intervals suggested that the extended beta regression model was superior to the linear regression model. However, the expended beta regression model could explain the heteroscedasticity and predict within the bounded range. Therefore, the expended beta regression model are appropriate for fitting the health-related quality of life data such as EQ-5D.

강우센서에서 생성된 강우정보를 이용한 선형회귀분석과 대역 통과 필터링 분석간의 정확도 비교

  • Kim, Yeong-Gon;Lee, Seok-Ho;Kim, Byeong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.172-172
    • /
    • 2017
  • 본 연구는 차량의 AW(AutoWiping) 기능을 위해 장착된 강우센서를 이용하여 강우정보를 생산하는 기술을 개발하고자 하였다. AW(AutoWiping) 기능이란 차량 앞창(Windshield)에 빗방울이 맺히게 되면 광신호의 산란으로 인해 수광부에 들어오는 감소되는 광신호의 정도에 따라 차량 와이퍼의 속도를 결정해 주는 기능이다. 빗방울이 많이 맺힐수록 광신호는 감소되며 와이퍼는 더 빠른 속도로 작동을 하게 된다. 여기서 강우센서가 강우량이 많으면 감소된 광신호 데이터를 표출하는 현상을 이용하여 강우정보를 생산한다. 강우센서는 총 8개의 채널로 이루어져있고, 초당 250개의 광신호 데이터를 수집하며, 10분이면 약 120만 개의 데이터가 생산되게 된다. 이 대량의 데이터에서 정확한 강우량을 산출하기 위해 강우센서의 초기값과 와이퍼 이동시 발생하는 순간 이상치를 제거해야 한다. 하지만 일일이 수백만 개 이상의 데이터에서 모든 이상치를 제거하는 작업은 불가능하다. 따라서 이상치를 포함한 회귀 분석 방법을 연구하였고, 인공강우 발생기를 이용하여 광신호를 강우량으로 환산하는 2가지 회귀식이 유도되었다. 이들은 각각 이상치를 모두 포함시켜 독립변수(광신호)에 따라 종속변수(강우량)의 값이 변화하는 관계를 나타내는 선형회귀분석(model 1), 임계치를 정하여 일정 이상치가 제거된 신호만 통과시키는 대역통과 필터링 분석(model 2)으로 유도된 회귀식을 실강우에 회귀식을 적용하여 정확도를 분석하였다.

  • PDF

A Development of Formula on Time of Concentration and Storage Constant in Sumjin River Basin (섬진강 유역의 도달시간 및 저류상수 산정공식 개발)

  • 이신재;박양래;김명수;박상우
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1193-1197
    • /
    • 2004
  • 본 연구는 강우에 내한 유역의 반응시간에 관한 연구로써 우리나라 자연하천유역에 적합한 도달시간 및 저류상수 산정공식을 개발하기 위하여 섬진강 유역을 대상으로 유역특성인자 및 강우 특성인자를 분석하고, 이를 다중회귀분석방범 중 최적의 회귀모형을 추출하기 위한 단계별 회귀분석방법을 이용하여 산정공식을 개발하였다. 그리고 개발된 산정공식으로부터의 도달시간 및 저류 상수들을 기존 경험공식의 값들과 비교하였으면, 또한 이를 Clark 모형에 적용하여 실제 호우사상들에 대한 유출수문곡선을 분석하여 관측수문곡선과 비교 검토하였다. 그 걸과 계산된 유출수문곡선과 관측수문곡선은 첨두유량 및 첨두발생시간에서 비교적 적은 오차를 보였으며, 유출수문곡선의 양상에서도 상호 높은 상관성을 보여 개발된 산정공식에 대한 적합성을 잘 나타내주고 있다.

  • PDF

Similarity Search in Time-Series Databases Using Decomposition Method (시계열 데이터베이스에서의 분해법을 이용한 유사 검색 기법)

  • 박신유;문봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.110-112
    • /
    • 2000
  • 최근 몇 년간 시계열 데이터의 저장 및 분석에 대한 연구가 활발히 진행되고 있으며, 시계열 데이터베이스에서 유사패턴(similarity pattern)을 탐색하는 기법이 광범위한 응용분야에서 중요한 연구주제로 자리잡고 있다. 본 논문에서는 회귀분석방법을 바탕으로 한 분해 시계열 방법을 이용함으로써 기존의 유사성의 개념을 확장시켰다. 즉, 시계열 데이터가 가지고 있는 패턴을 여러 성분으로 분해하여 각기 다른 저장 공간에 저장하고, 이를 이용하여 유사성을 탐색할 때에도 분리된 각 성분 중 특정 변동특성이 유사한 데이터를 추가적으로 요구되는 시간없이 검색할 수 있다. 이는 전체 시계열 데이터를 이해하는데 뿐만 아니라 데이터를 예측하는 방법에도 유용하게 사용될 수 있다.

  • PDF

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression (Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역 빈도분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.325-340
    • /
    • 2008
  • This study employs Bayesian multiple regression analysis using the ordinary least squares method for regional low flow frequency analysis. The parameter estimates using the Bayesian multiple regression analysis were compared to conventional analysis using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian analysis at each return period are not significantly different. However, the difference between upper and lower limits is remarkably reduced using the Bayesian multiple regression. Therefore, from the point of view of uncertainty analysis, Bayesian multiple regression analysis is more attractive than the conventional method based on a t-distribution because the low flow sample size at the site of interest is typically insufficient to perform low flow frequency analysis. Also, we performed low flow prediction, including confidence interval, at two ungauged catchments in the Nakdong River basin using the developed Bayesian multiple regression model. The Bayesian prediction proves effective to infer the low flow characteristic at the ungauged catchment.

Comparison of GEE Estimation Methods for Repeated Binary Data with Time-Varying Covariates on Different Missing Mechanisms (시간-종속적 공변량이 포함된 이분형 반복측정자료의 GEE를 이용한 분석에서 결측 체계에 따른 회귀계수 추정방법 비교)

  • Park, Boram;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.697-712
    • /
    • 2013
  • When analyzing repeated binary data, the generalized estimating equations(GEE) approach produces consistent estimates for regression parameters even if an incorrect working correlation matrix is used. However, time-varying covariates experience larger changes in coefficients than time-invariant covariates across various working correlation structures for finite samples. In addition, the GEE approach may give biased estimates under missing at random(MAR). Weighted estimating equations and multiple imputation methods have been proposed to reduce biases in parameter estimates under MAR. This article studies if the two methods produce robust estimates across various working correlation structures for longitudinal binary data with time-varying covariates under different missing mechanisms. Through simulation, we observe that time-varying covariates have greater differences in parameter estimates across different working correlation structures than time-invariant covariates. The multiple imputation method produces more robust estimates under any working correlation structure and smaller biases compared to the other two methods.

Flood risk assessment by multiple regression using hourly precipitation (시강우량 자료 다중회귀분석에 의한 홍수위험 평가)

  • Park, Chang Eon;Kim, Chan Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.264-264
    • /
    • 2016
  • 홍수위험의 정도를 표시하기 위한 연구는 다양한 방법으로 진행되어 왔으나, 많은 지역에 수리 및 수문모형을 적용하여 홍수위험을 평가하기에는 매개변수 보정이나 모형의 검정에 한계가 있을 수밖에 없다. 특히, 많은 지역에 대하여 행정구역별로 홍수위험을 평가한다던지, 기후변화에 따른 홍수위험 변화양상을 평가하기 위하여는 더욱 그러하다. 이에 본 연구에서는 기존의 수위관측소에서 관측되어진 유량 자료를 적극 활용하여 시강우량과의 다중회귀분석을 통하여 첨두유량을 예측할 수 있는 회귀방정식을 구축하고 홍수위험을 평가할 수 있도록 시도하였다. 홍수피해는 하천의 유량 증가가 가장 직접적인 원인이 될 수 있으며, 비교적 하천정비가 잘 이루어진 우리나라의 경우는 하천정비 시 설정한 계획홍수량과 호우에 따라 발생되는 첨두유량을 비교하여 홍수피해 발생여부를 판단할 수 있을 것이다. 하천의 첨두유량 값은 복잡한 유역특성이나 수문특성에 의하여 결정되지만, 결국은 시간별 순간 최대강우량의 조합에 의하여 크게 좌우 되는 것으로 판단된다. 본 연구에서는 수도권의 일부 행정구역별 대표 수위관측소를 정하고, 각 지점의 최근 10년 동안의 하천유량 관측자료를 이용하여 단일 호우사상의 1시간, 2시간, 3시간, 5시간, 10시간, 1일, 2일, 3일, 5일, 10일 순간최대강우량과 첨두유량 사이의 다중회귀분석을 실시하여 유의한 통계값을 보이는 자료끼리 회귀방정식을 구성하도록 하였다. 다중회귀분석은 각 하천 지점별로 해당 하천의 수리특성이 일정하게 유지되어진 기간 동안만을 선정하여 분석하였으며, 유량자료 가운데 각 지점에서 관심수위 이상으로 유량이 크게 증가하였던 호우사상만을 사용하였다. 회귀분석 결과, 매우 의미 있는 회귀방정식의 도출이 가능하였는데, 의정부시 신곡교의 경우는 1시간, 10시간, 1일 강우량으로부터, 광주시 경안교 지점의 경우는 3시간, 1일, 10일 강우량으로부터, 양평군 흑천교 지점의 경우는 10시간, 3일 강우량으로부터 각각 첨두유량을 예측할 수 있는 회귀방정식이 높은 유의성을 보이는 것으로 나타나, 유역면적이나 도달시간 등의 유역특성을 어느 정도 반영하고 있는 회귀방정식이 도출된 것으로 판단되었다. 이와 같은 회귀방정식에 의하여 예상되어지는 시간별 강우량 자료를 적용하면 첨두유량을 예측할 수 있으며, 이를 기존 계획홍수량과 비교하여 홍수위험 정도를 적절하게 평가할 수 있을 것으로 판단된다.

  • PDF