• Title/Summary/Keyword: 홴 소음

Search Result 114, Processing Time 0.021 seconds

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

An Experimental Study on the Effects of Non-uniform Inlet Flows upon Tonal Radiation from an Axial-type Propeller Fan (불균일 난류 유입유동이 프로펠러형 송풍기의 톤소음에 미치는 영향에 대한 실험적 연구)

  • Lee, Seungbae;Kim, Kwang-Yong;Yang, Gwi-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-57
    • /
    • 1998
  • The acoustic signatures from a propeller fan under non-uniform inlet flow conditions were measured to reveal the mechanism for tonal radiation. Experimental studies were carried out by generating non-uniform turbulent flows with circumferential and radial components of harmonic incoming gust deliberately. This paper reports the measured acoustic power exponents and cross-spectra for circumferential and radial disturbances at a specified flow-rate coefficient.

  • PDF

공조기용 열교환기

  • 윤정인
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.10
    • /
    • pp.47-51
    • /
    • 2000
  • 최근 룸에어콘이나 패키지에어콘의 에너지 절약, 쾌척성 등에 대환 사용자나 회사로부터의 요구는 더더욱 높아지고 있다. 공조기의 중요한 구성요소 중 하나인 열교환기도 이러한 요구에 대응하여 기술개발이 계속해서 진행되고 있다. 공조용 열교환기를 설계할 때 가장 중요한 과체는 비용이냐 설치성 등의 제약조건올 만족하면서 필요한 교환열량을 달성하기 위해, 요구되는 열 전달계수(K)와 전열면적(A)의 곱인 KA값을 얼마나 확보하는가 하는 점에 있다. 그러나 이 외의 과제, 예를 들어 홴입력, 소음을 억제하기 위한 공기측 통풍저항의 감소, 증발온도에 영향을 마치는 관내압력손실의 감소 등도 중요한 과제이다. KA값 증대와 통풍저항억제를 동시에 판촉하기 위해 공조용 열교환기는 전면면적을 크게 하고 두께를 작게 하여 사용하는 것이 원칙이다. 또, 전열관의 관경도 관 둘레길이와 냉매분배성능 면에서 제약이 발생한다. 이와 같은 배경으로부터 공조용 열교환기는 판경 6~10 mm정도의 전열 관을 20~25mm길이로 배치한 핀튜브형 열교환기가 주류로 되어있다. 여기에서는 공조기에 널리 사용하고 있는 핀튜브형 열교환기에 대한 최근의 기술개발 사례를 소개하고자 한다.

  • PDF

An Analysis of the Flow Field and Radiation Acoustic Field of a Centrifugal Impeller with Wedge(I) -An Analysis of the Flow Field and Aeroacoustic Source- (웨지가 있는 원심 임펠러의 유동 및 방사 음향장 해석(I) -유동장 및 소음원 해석-)

  • Lee, Deok-Ju;Jeon, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1157-1164
    • /
    • 2001
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few research have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowsons method is used to predict the acoustic source. In order to compare the experimental data, a centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal.