• Title/Summary/Keyword: 황색점멸신호

Search Result 4, Processing Time 0.017 seconds

Safety Evaluation of Flashing Yellow Operation at Night (야간 황색점멸신호 운영에 따른 안전성 평가)

  • Beak, Tae Hun;Park, Byung Ho
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.16-25
    • /
    • 2013
  • This study deals with the relationships between flashing operation and traffic accident at signalized intersections. The objective of this study is to analyze safety effects of the yellow flashing operation at night. In pursuing the above, this study gives particular attention to evaluating the safety results from signal operation of Cheongju's 190 signalized intersections using before-after evaluation with comparison group that are categorized by highway function. The main results are as follow. First, the numbers of traffic accidents and of fatalities/injuries in two highway types (arterial and collector road) have increased after operating the yellow flashing signal at night. Second, the numbers of accidents, fatalities/injuries, severe accidents and of fatalities/severe injuries in group A(arterial) have increased by 19%, 36%, 15% and 14%, respectively. Finally, the numbers of accidents, fatalities/injuries, severe accidents and fatalities/severe injuries in group B (collector) have increased by 50%, 64%, 41% and 77%, respectively.

A Study of the Intersection in Reduce Car Accidents for Traffic Signal Light to Supplement (교차로 사고 감소를 위한 신호등 보완에 관한 연구)

  • Park, In-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Three types of traffic signal systems are two-color signal systems that flash red and green and are mainly used on crosswalks, next, three-color equalization systems mainly used at T-shaped intersections with red and yellow lights and a green arrow, and third, four-color intersections that generally have red, yellow and green colored lights and a green arrow. In what is known as the "dilemma zone" area, a driver collects information that influences his/her decision whether to stop, speed, tail, interrupt, or violate a traffic light, depending on the intersection width, vehicle speed, cognitive response time and reference yellow signal time. This study examined the impact of changes in the length of the dilemma zone areas based on changes in yellow signal times, the speed of the intersection passages, and signal lamps. Downward adjustments of 50km/h and 60km/h affected yellow signal time. The yellow signal time increased by 0.1 to 2.3[s] due to this effect and the dilemma zone area increased by 1.22 to 26[m]. The driver of the dilemma zone could quickly decide to reduce the time remaining of the straight (3color, 4color) green signal to reduce the potential of a traffic accident at the intersection traffic. Safe entry of red (LED palm) and left-turn signals for entering flashed at the intersection and operated at midnight.

Design and Implementation of Response type of Flickering Green Signal System using Beacon Message (비콘메세지를 이용한 반응형 녹색점멸 신호시스템 설계 및 구현)

  • An, Hyo-In;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.241-247
    • /
    • 2016
  • As a domestic traffic control signal system, either the system with which a traffic signal turns into green at regular intervals or the system with which an amber or a red signal flickers on local roads without heavy traffic at midnight has been utilized. However, when the former system is used for roads with light traffic at midnight, delays and congestion can be incurred. Besides, in case of the latter signal system, the risk of vehicle crash is high. This study proposes a response type of flickering green signal system that rearranges signal system after analyzing beacon messages including sensor data. The proposed system, on a trunk road or a branch road at midnight, makes the signal keep flickering in green; When a vehicle enters the range of RSE, the transfer coverage, it transmits beacon messages regularly and Agent System analyzes the messages and alters the signal. It is a system by which vehicles move following the altered signal system, which will not only ensure smooth flow but also prevent vehicles from crashing on a road with light traffic. As a result of a simulation, traffic throughput and the average waiting time displayed 10 to 30 percent better improvement than existing signal systems, in terms of performance.

Development of a Traffic Signal Controller for the Tri-light Traffic Signal (3구신호등 제어용 교통신호제어기 개발)

  • Han, Won-Sub;Gho, Gwang-Yong;Heo, Nak-Won;Lee, Chul-Kee;Ha, Dong-Ik;Lee, Byung-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.49-58
    • /
    • 2010
  • The traffic signal controllers being used in the domestic currently are being manufactured based on the korean national police standard which was developed for controlling the quad-light traffic signal having the red, yellow, left-turn arrow, and green lights. But according to the national policy for the traffic operation, they have to be changed to be able to switch the tri-light signal having red, yellow and green lights. In this study, a new tri-light traffic signal controller was designed and developed by the way improving the Signal Control Unit of the existing quad-light standard traffic controller. The Load Signal Unit(LSU) was improved to output 6 signals which are the two assemblies of three signal indications having the red, yellow, and green lights. To enough traffic signals output to control each directional movements and the various transport modes which are car, bus, bike, and pedestrian etc., the connector bus system was designed to be able to accommodate maximum 96 signals outputs being constructed by 16 LSUs. Flasher device was developed to be able to support maximum 32 red signals. In the software, the communication protocol between traffic control center and the traffic signal controller was improved and new signal map code values were defined for the developed LSU controlling the quad-light traffic signal. A model of the quad-light traffic signal controller developed and was tested three operations, protocol-operation, remote-command and control-mode. The test result operated all of them successfully.