• Title/Summary/Keyword: 황산루프

Search Result 2, Processing Time 0.246 seconds

Development of a Compact Nuclear Hydrogen Coupled Components Test Loop (원자로수소생산을 위한 연결부품 실험용 소형 컴팩트 실험장치 개발)

  • Hong, S.D.;Kim, J.H.;Kim, C.S.;Kim, Y.W.;Lee, W.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2850-2855
    • /
    • 2008
  • Very High Temperature Reactor (VHTR) has been selected as a high energy heat source for a nuclear hydrogen generation. The VHTR heat is transferred to a thermo-chemical hydrogen production process through an intermediate loop. Both Process Heat Exchanger and sulfuric acid evaporator provide the coupled components between the VHTR intermediate loop and hydrogen production module. A small scaled Compact Nuclear Hydrogen Coupled Components test loop is developed to simulate the VHTR intermediate loop and hydrogen production module. Main objective of the loop is to screening the candidates of NHDD (Nuclear Hydrogen Development and Demonstration) coupled components. The operating condition of the gas loop is a temperature up to $950^{\circ}C$ and a pressure up to 6.0MPa. The thermal and fluid dynamic design of the loop is dependent on the structures that enclose the gas flow, especially primary side that has fast gas velocity. We designed and constructed a small scale sulfuric acid experimental system which can simulate a part of the hydrogen production module also.

  • PDF

Characteristics of Corrosion and Water Quality in Simulated Reclaimed Water Distribution Pipelines (모형 재이용관을 이용한 하수재이용수의 부식 및 수질영향 연구)

  • Kang, Sung-Won;Lee, Jai-Young;Lee, Hyun-Dong;Kim, Gi-Eun;Kwak, Pill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.473-479
    • /
    • 2012
  • Water reuse has been highlighted as a representative alternative to solve the lacking water resource. This study carried out a study on the pipe corrosion and water quality change which can occur through the supply of reclaimed water, using a simulated reclaimed water distribution pipeline. Galvanized steel pipe (GSP), cast iron pipe (CIP), stainless steel pipe (STSP) and PVC pipe (PVCP) were used for the pipe materials. Reclaimed water(RW) and tap water(TW) were respectively supplied into simulated reclaimed water distribution pipelines. As a result of performing a loop test to supply reclaimed water to simulated reclaimed water distribution pipelines, the weight reduction of pipe coupons showed the sequence of CIP > GSP > STSP ${\approx}$ PVCP. In addition, reclaimed water showed a high corrosion rate comparing to that of tap water. In case of CIP, the initial corrosion rate showed 3.511 mdd(milligrams per square decimeter per day) for reclaimed water and 2.064 mdd for tap water and the corrosion rate for 90 days showed 0.833 mdd for reclaimed water and 0.294 mdd for tap water. Also in case of GSP, the initial corrosion rate showed 2.703 mdd for reclaimed water and 2.499 mdd for tap water and the corrosion rate for 90 days showed 0.349 mdd for reclaimed water and 0.248 mdd for tap water, which was a tendency similar to that appeared in CIP with a tendency to reduce the corrosion rate. As a result of water quality changes of reclaimed water at pipe materials to carry out the loop test, there was higher conversion ratio of ammonia into nitrate in CIP and GSP with higher corrosion rate than that in STSP and PVCP where no corrosion has occurred. The highest denitrification rate of nitrate could be observed from CIP with the most particles generated from corrosion. In CIP, it could be confirmed that there was MIC (Microbiologically Induced Corrosion) as a result of EDS (Energy Dispersive X-ray spectrometer System) analysis results.