• Title/Summary/Keyword: 황등화강암

Search Result 14, Processing Time 0.019 seconds

Prediction of the optimum cutting condition of TBM disc cutter in Korean granite by the linear cutting test (선형절삭시험에 의한 TBM 디스크 커터의 최적 절삭조건 예측)

  • Park, Gwan-In;Jang, Su-Ho;Choe, Sun-Uk;Jeon, Seok-Won
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.217-236
    • /
    • 2006
  • In this study, the LCM was applied as the preliminary study for the cutterhead design of TBM and the drilling performance evaluation. The optimum cutting condition is obtained from the LCM tests and the effects of the design factors of IBM cutterhead, such as penetration depth and cutter spacing, on drilling performance are estimated. In this study, hence, to predict the accurate performance of TBM, instead of one-dimensional penetration depth applied in existing studies, three-dimensional cutting volume was quantified and measured. For this, the digital photogrammetry technique was applied to the LCM tests. Also, AUTODYN 2D was applied to investigate the applicability of the numerical analysis technique to simulate the cutting process of rock by the TBM disc cutter.

  • PDF

A Basic Study on Borehole Breakout under Room Temperature and High Temperature True Triaxial Compression (상온 및 고온 하 진삼축압축실험을 이용한 시추공의 파괴 거동 기초 연구)

  • Yoon, Jeonghwan;Min, Ki-Bok;Park, Eui-Seob;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.559-572
    • /
    • 2020
  • This paper performs laboratory experiments for borehole stability considering temperature and true triaxial stress condition, and observes a thermo-mechanical behavior of the rock under stress and temperature conditions of deep underground. China yellow sandstone and Hwangdeung granite specimens were used to perform a true triaxial compression test. Mechanical tests were carried out under nine confining pressure conditions, and thermo-mechanical tests using granite samples were carried out under six confining pressure conditions at 60-100℃. In the mechanical tests, maximum principal stress at borehole breakout was proportional to intermediate principal stress. In the thermo-mechanical tests, it was confirmed that thermal stress is added to the stress field of the borehole with the increase in temperature, resulting in additional breakout progress. To analyze the results of the laboratory experiment, Mogi-Coulomb failure criterion was used. The results of traditional triaxial compression test on cylindrical specimens and borehole breakout under true triaxial compressions matched well with Mogi-Coulomb failure criterion.

Experimental Study for Optimal Method in Measuring the Basic Friction Angle of Rock (최적의 기본마찰각 측정법에 관한 실험적 연구)

  • Lee, Kook-Hyun;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.565-578
    • /
    • 2019
  • Basic friction angles of Hwangdeung granite, Berea sandstone, Jeongsun marble, Hongcheon gneiss, Pungam shale and Eumseong sandy shale were measured by direct shear test, tilt test and pull test. Characteristics of basic friction angle and the accuracy of test methods were compared and the optimal method in measuring basic friction angle was suggested. Although basic friction angles might be measured accurately by direct shear test, the test apparatus is expensive and procedures are complicated. Tilt tests which is the suggested method for measuring basic friction angle by International Association for Rock Mechanics also provided similar basic friction angles measured by direct shear test. However, the error measured for the same rock type is higher than 7° and values by repeated measurements in one sample show different trends, such as increasing or decreasing or almost constant as measurements continued. The difference measured in one gneiss sample is higher 12°, indicating that tilt test may be not a reliable method for measuring basic friction angle. Not only pull test provided accurate and consistent results under low normal stresses, but also test apparatus is simple and inexpensive and procedure is not complicated, indicating that pull test may be the optimal method for measuring basic friction angle.

Application of the Electrical Impedance of Rocks in Characterizing Pore Geometry (암석 내 공극구조의 평가를 위한 전기임피던스의 적용)

  • Choo, Min-Kyoung;Song, In-Sun;Lee, Hi-Kweon;Kim, Tae-Hee;Chang, Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.323-336
    • /
    • 2011
  • The hydro-mechanical behavior of the Earth's crust is strongly dependent on the fractional volume and geometrical structure of effective pore spaces. This study aims to understand the characteristics of pores using electrical impedance. We measured the electric impedance of core samples (diameter, 38-50 mm; length, 70-100 mm) of three types of granite (Hwangdeung, Pocheon, and Yangsan) and two types of sandstone (Boryung and Berea) with different porosities and pore structures, after saturation with saline water of varying salinities. The results show that resistance decreases but capacitance increases with increasing salinity of the pore fluid. For a given salinity, the resistivity and formation factor are reduced with increasing porosity of the rocks, and the capacitance increases. Berea sandstone shows anisotropy in resistance, tortuosity, and cementation factor, with these factors being highest normal to bedding planes. This result indicates that the connectivity of pores is weakest normal to bedding. In conclusion, the electrical characteristics of the tested samples are related not only to their porosity but also to the pore geometry.