• Title/Summary/Keyword: 활동연약대

Search Result 13, Processing Time 0.024 seconds

Application of Geophysical Exploration Technique to the Identification of Active Weak Zones in Large Scale Mountainous Region (대규모 산지지반 활동연약대 규명을 위한 지구물리탐사기법의 활용 연구)

  • Shin, Hyung Ohk;Kim, Man-Il;Yoon, Wang Joong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2018
  • The purpose of this study is to understand the ground change of large scale mountainous region and to estimate the active weak zone using geophysical exploration (electrical resistivity and refraction seismic explorations) in large scale deep landslide area located in Wanjugun, Jeollabukdo. We also analyzed the characteristics of deep landslides occurred in metamorphic rocks region and confirmed the approximate scale. As a result of comparative analysis of N-value by standard penetration test (SPT), low resistivity anomaly, and tension crack identified from field investigation, a discontinuity in soil layer was estimated at 10 ~ 15 m below the surface. Based on this results, the distribution pattern of active weak zone was confirmed between the discontinuity in soil layer and estimation line of bedrock.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Evaluation of Safety Factors for the Soft Ground Breakwater Design (연약지반방파제의 설계를 위한 안전율 평가)

  • 권오순;장인성;박우선;염기대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.197-206
    • /
    • 2003
  • A new type of breakwater, which can be applicable to soft ground without special treatment because of its light self weight and structural characteristic of bottom wall, has recently been developed. The objective of this study is to propose an evaluation method of safety factor for the new type of breakwater considering 3 categories of sliding, overturning, and bearing capacity. Previous method for gravity type of breakwater was modified and the proposed method was verified by comparing the safety factors with maximum lateral displacements, which were obtained from finite element analysis for various types of breakwaters and ground conditions. The results showed the newly proposed evaluation method of safety factors could reasonably be utilized.

The Study on Seismic Stability Evaluation Model for Rock Foundation of Nuclear Power Plant (원전 기초지반의 지진안정성 평가 모델 연구)

  • Hwang, Seong-Chun;Jang, Jung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.1-10
    • /
    • 2005
  • The purpose ol this study Is to suggest a proper analysis model that can evaluate seismic stability for local rock foundation of nuclear power plant. Sliding Analysis, Pseudo-static Analysis and Dynamic Analysis methods are used for analysing NPP rock foundation with the conditions like acting directions of input earthquake, boundary conditions, width and depth of analysing model, and modeling methods of weakness fault zones. As the results of study, Pseudo-static Analysis for lateral roller and dynamic analysis for transfer boundary condition showed good results, and analysing ranges of width and depth were 5 times of structure width and over 2 times ol structure depth.

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.

Electric and Electromagnetic Surveys of the Hongseong Fault Zone (홍성 단층대에서의 전기, 전자 탐사 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Park, Gye-Soon;Oh, Seok-Hoon;Lee, Choon-Ki
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2003
  • We have investigated the electric resistivity structure of the fault zone located in the Hongseong area where a big earthquake with M 5.0 occurred in 1978. Usually, Electric and Electromagnetic methods are broadly operated in the field of engineering works since these methods are effective to understand the distribution of geological weak zones - fault or fracture zones. We have conducted the dipole-dipole array resistivity method and MT(magnetotelluric) method and interpreted the resistivity distribution of the fault zone with the aid of various inversion methods. An MT survey was performed at 18 points along a 2.9 km survey line perpendicular to the fault line and a magnetic dipole source was used to enhance the S/N ratio in the high frequency. A Electric dipole-dipole array resistivity survey with the dipole length of 50 meters was carried out perpendicular to the fault. In view of two survey results, the fault marks the boundary between two opposite resistivity structures, especially the low resistivity zone is exhibited deeply through the prospective fault line. The result that the low resistivity zone is located at the center of the fault zone corresponds with the fact that the fault zone of the Hongseong area is active. We expect these results to provide basic information about the physical properties of fault zones in Korea.

스피츠버겐 페리도타이트에 대한 Lu-Hf 및 Re-Os 동위원소 시스템의 활용: 맨틀-지각간의 성인적 연계성에 대한 고찰

  • Choe, Seong-Hui;Shzuki, K.;Mukas, S.B.;Lee, Jong-Ik
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.23-23
    • /
    • 2010
  • 스발바드 서측에 위치하는 스피츠버겐 하부의 암석권맨틀의 분화시기를 규명하기 위하여, 두 개의 독립적인 방사성동위원소 시스템인 Lu-Hf과 Re-Os 시스템을 스피넬 페리도타이트(spinel peridotite)에 활용하였다. 전암에 대한 Re-Os 계통(Re-Os 에러크론, 알루미노크론, Re-결핍연대 등)은 연구지역의 페리도타이트가 대류하는 맨틀로부터 고기원생대/후기시생대에 분리되었음을 지시한다. 흥미롭게도 이런 연대는 페리도타이트내 단사휘석 결정들에 대하여 얻어진 Lu-Hf 에러크론 연대와 일치한다. 또한 시료 내에 지구화학적으로 기록된 현무암질 액의 결핍정도 역시 계통적으로 위의 연대를 지지한다. 위 연대는 스피츠버겐 서측부에 보고된 가장 오래된 지각의 연대와 일치한다. 따라서 연구지역의 암석권맨틀이 연약권으로부터 분리된 것은 접촉하고 있는 지각과 동시기적으로 이루어진 사건임을 알 수 있다. 연구지역은 팔레오세 이래로 복잡한 지구조적 응력장 변화(압축에서 신장환경으로의 변화)를 겪었다. 그럼에도 불구하고 지각과 커플링된 암석권맨틀이 현존한다는 것은 연구지역내 응력장변화가 대규모의 암석권 디라미네이션(delamination)을 유발하지는 않았다는 것을 의미한다. 그러므로 북극권의 화산활동을 설명하기 위하여 북극권 상부맨틀에 존재한다고 알려진 듀팔(DUPAL) 같은 부화된 물질의 성인으로 일부의 연구자들이 주장하여 온 디라미네이션된 암석권맨틀의 존재는 설득력이 없다고 판단된다.

  • PDF

Analytical Verification of Seismic Reinforcement Effect of Port Breakwater during Earthquake (지진시 항만 방파제의 내진보강 성능에 관한 해석적 검증)

  • Yihyuk Kwon;Hyeok Seo;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.657-671
    • /
    • 2023
  • As large-scale earthquakes have occurred in Korea and their aftermath continues to be felt, laws and regulations on seismic design have been emphasized, and in Korea, the seismic design standards have been newly revised after the Gyeongju earthquake. In the revised seismic design standards, a stability review for the destruction of the support activity of the breakwater was newly added. Therefore, in this study, we conducted a stability analysis on the seismic reinforcement method for the study site, and checked the ground acceleration of the subgrade and the displacement of the structure over time. As a result of the stability analysis, the safety factor increased by at least 0.5 and up to 1.7. As a result of the time history analysis, the displacement of the superstructure decreased by up to 290 mm and down to 12 mm in both the shallow and deep sections before and after reinforcement, and the ground acceleration decreased by up to 5.33 m/s and down to 0.31 m/s after reinforcement.

Borehole Image Processing System(BIPS)를 이용한 사면 안정성 해석

  • Yu, Byeong-Ok;Kim, Byeong-Seop
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.111-129
    • /
    • 2002
  • Generally, investigation methods of cut slope are conucted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.