• Title/Summary/Keyword: 환봉절단

Search Result 5, Processing Time 0.017 seconds

고속 환봉절단(Cropping) 금형의 최적설계(1)

  • 박준수;임성주;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.73-77
    • /
    • 1992
  • 환봉소재의 정밀절단을 위한 고속 환봉절단 공정에 있어서 절단금형은 공정중 막대한 타격력을 받기 때문에 금형의 파손방지 및 내구성향상을 위한 금형설계 기술이 절실히 요구되고 있다. 이같은 절단금형의 최적설계를 위해선 타격시 램이 금형에 가하는 충격력에 대한 예측이 필수적이므로 본 연구에서는 환봉절단 공정에 대한 동역학적 해석을 통해 충격력과 접촉시간을 이론적으로 구하였으며 이를 기존의 이론값과 비교한 결과, 보다 정확한 충격력의 예측이 가능하였다. 그리고 본 이론을 국내 최초로 개발된 환봉절단 장치에 적용하여 타격속도, 절단저항, 램과 금형의 하중비 등의 인자들과 충격력 사이의 관계를 밝혀냄으로써, 향후 최적금형 설계를 위한 데이터 베이스를 구축하였다.

A Study on the Performance of Hardmetal with Whetstone Saw (초경톱과 숫돌톱의 성능에 관한 연구)

  • Lee, Chul-Ku;Lee, Woo-Ram;Kim, Jing-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.498-506
    • /
    • 2009
  • An experimental study was performed to select cutting parameters for better quality-products in hard metals such as steels. Usually, a hard metal can be cut with a rotary cutting knife and the process provides a good cutting quality result. However, the cutting machine is much sensitive in cutting conditions because of its complicated mechanism. By this reason, careful processing conditions must be taken to improve the quality of the products. This experimental study for better quality products with a rotary cutting knife was carried out with two main factors; cutting speeds and cutting and pooling forces. A two-dimensional profile measuring instrument is used to evaluate its cutting faces and the effects of processing factors are analyzed by a commercial software.

  • PDF

A Study on the characteristics of high speed precision bar cropping (환봉의 고속정밀절단 특성에 관한 연구)

  • 임성주;김소겸;나경환;정성종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.209-217
    • /
    • 1994
  • The present study is concerned with the characteristics of the high speed precision bar cropping. This process is a practical application of High Energy Rate Forming in which the impact energy source is given by internal combustion engine. To enhance the added value of product, the recent forging fields trend toward the near net shape processes through the cold and closed die forging. For the purpose of these processes the precedent process is to obtain the precision billet which has little weight deviation and defect. The accuracy of initial billet by bar cropping depends upon the process parameters and die design technology. Therefore, in order to investigate the effect of process parameters upon product quality, the cropping experiments are carried out according to the various parameters such as billet clearence, billet length, billet material, cropping speed and so on. From these results some criteria of the optimal die design for the product of good quality are suggested.

  • PDF

A Study on the Anchorage Length of Metal Stiffeners for the Structural Reinforcement of Stone Cultural Heritages (석조문화재의 구조적 보강을 위한 금속보강재 정착길이 연구)

  • Kim, Sa-Dug;Lee, Dong-Sik;Kim, Hyun-Yong
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2012
  • It was the 1900s that the damaged materials of stone heritages began to be preserved and managed for the purpose of reuse, especially since cement, an inorganic material, began to be used during the Japanese colonial period. Epoxy resin, an organic material, was introduced to architecture around the turn of the 1990s, and has been being used across the board. In particular, filler mixtures began to be aggressively used for the structural reinforcement of severed materials. The problem was metal stiffeners used for structural reinforcement. The anchorage length varied depending in different conservation scientists, and as a result the secondary damage was apt to occur in the materials. In this study, hereat, a calculation was made of the most effective anchorage length with the minimization of material damage. The results were as in the following: the anchorage length of an 8-milimeter-across (ø8) metal stiffener was found to be most effective at 60.88mm. Those of ø12 and ø16 were 60.88mm and 91.32mm respectively. In the case of other calibers, the anchorage length was calculated by a formula ${\ell}_d=a_tf_y/u{\Sigma}_0$. In the experiment, helically-threaded round bars were used as metal stiffeners in order that they could bear surcharge loads such as bending, shear and constriction.

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron (회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가)

  • Sung, Yong Hyeon;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.721-728
    • /
    • 2017
  • High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.